Manufacturing of High-Performance Tactile Sensors by High Resolution 3D Printing and Conformal Polymer Coating

通过高分辨率 3D 打印和保形聚合物涂层制造高性能触觉传感器

基本信息

  • 批准号:
    2318677
  • 负责人:
  • 金额:
    $ 51.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

Like human skin, tactile sensors are the e-skin for robotics and personalized medical devices to perceive and interact with the environment. Most existing tactile sensors can detect either hair-like soft objects, or spoon-like stiff ones, but not both. Also, the sensing time ranges from milliseconds to seconds, which is too slow for detecting fast-changing signals, such as vibrational or fast-moving objects. This award supports research that investigates the manufacturing of high-performance tactile sensors that can detect various sizes of objects within microseconds. This project advances the knowledge about high-resolution three-dimensional printing of multi-scale structures and their conformal polymer coating for functionality. The high-performance tactile sensors have the potential to replace those currently employed, such as in touch screen displays, security systems, human-machine interaction, and virtual reality devices. The project addresses manufacturing challenges of forming complex structures and making functional materials. The outcomes can provide a manufacturing tool for many engineering applications requiring novel geometries and materials, such as chemical sensors, photodetectors, batteries, capacitors, and chemical catalysts. The method can also be used to make biological implants with multiscale structures for better cell attachment. This project introduces STEM students, especially, underrepresented minorities to wearable electronics and robotics and stimulates them for careers in engineering. This project enables a new manufacturing capability for hierarchically architected structures with multiple length scales from nanoscale to centimeter scale. This approach is a paradigm shift in manufacturing functional devices, where micron-scale 3D printing fabricates the flexible multiscale substrates while the oxidative chemical-vapor-deposition (oCVD) technique is used to coat with polymers and nanomaterials for functionalities, such as conductivity and sensing. The project advances the fundamental manufacturing knowledge in many ways. It establishes a method to control spatial-temporal exposures for sub-pixel resolutions, which benefits all photo-polymerization processes. By analyzing and engineering the interfacial properties and adhesion characteristics, the project establishes conformal coating strategies which result in a seamless but thin conductive layer to maximize the effect of the multiscale patterns. By a hierarchically architected shape with geometry features across multiple length scales, it determines sensing performance improvements and mechanisms for structure deformation and recovery in microseconds. The project establishes a new benchmark to evaluate the effect of contact angle and object size on the sensing performance for sophisticated activities such as robot object manipulation. A set of guidelines to design sensor shapes and engineer 3D printing and oCVD coating parameters is established and is made available to the research community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
像人类皮肤一样,触觉传感器是机器人技术和个性化医疗设备的电子皮肤,可感知和与环境相互作用。大多数现有的触觉传感器都可以检测出头发状的柔软物体,也可以检测到类似勺子的僵硬的物体,但不能两者兼而有之。同样,感应时间范围从毫秒到秒,它太慢了,无法检测快速变化的信号,例如振动或快速移动的对象。该奖项支持研究研究高性能触觉传感器的研究,这些传感器可以检测到微秒内的各种物体。该项目提高了有关多尺度结构的高分辨率三维印刷及其用于功能性的共形聚合物涂料的知识。高性能触觉传感器有可能替换当前使用的触觉传感器,例如在触摸屏显示,安全系统,人机交互和虚拟现实设备。该项目应对形成复杂结构并制造功能材料的制造挑战。结果可以为许多需要新颖的几何形状和材料的工程应用提供制造工具,例如化学传感器,光电探测器,电池,电容器和化学催化剂。该方法还可以用来使具有多尺度结构的生物植入物以更好的细胞附着。该项目介绍了STEM学生,尤其是代表性不足的少数群体来可穿戴电子产品和机器人技术,并刺激它们从事工程学的职业。该项目为层次结构的结构提供了新的制造能力,该结构具有多个长度尺度,从纳米级到厘米。这种方法是制造功能设备的范式转移,其中微米尺度的3D打印制造了柔性的多尺度基板,而氧化化学蒸气 - 沉积(OCVD)技术用于与聚合物和纳米材料一起涂层,例如电导率和传感和传感和传感和纳米材料。该项目在许多方面都可以提高基本制造知识。它建立了一种控制子像素分辨率的时空暴露的方法,这有利于所有光聚合过程。通过分析和设计界面性能和粘附特性,该项目建立了保形涂层策略,从而导致无缝但薄的导电层,以最大程度地提高多尺度模式的效果。通过在多个长度尺度上具有几何特征的层次结构形状,它决定了感应性能的改进和微秒结构变形和恢复的机制。该项目建立了一个新的基准测试,以评估接触角度和对象大小对机器人对象操纵等复杂活动的传感性能的影响。建立了一套设计传感器形状和工程师3D打印和OCVD涂料参数的准则审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huachao Mao其他文献

Mask Video Projection Based Stereolithography With Continuous Resin Flow to Build Digital Models in Minutes
基于掩模视频投影的立体光刻技术,通过连续树脂流在几分钟内构建数字模型
Curved Layer Slicing based on Isothermal Surface
基于等温面的曲面层切片
  • DOI:
    10.1016/j.promfg.2021.06.081
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujie Shan;D. Gan;Huachao Mao
  • 通讯作者:
    Huachao Mao
BOM-based knowledge representation and reasoning for collaborative product development
基于 BOM 的知识表示和推理,用于协作产品开发
Hybrid-Light-Source Stereolithography for Fabricating Macro-Objects With Micro-Textures
用于制造具有微观纹理的宏观物体的混合光源立体光刻技术
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenxuan Jia;Yuen;Huachao Mao;Han Xu;Chi Zhou;Yong Chen
  • 通讯作者:
    Yong Chen
Choosing Models of Appropriate Resolutions for Simulation: A MRM Approach
选择适当分辨率的模型进行仿真:MRM 方法
  • DOI:
    10.1007/978-3-642-45037-2_18
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huachao Mao;Gongzhuang Peng;Heming Zhang
  • 通讯作者:
    Heming Zhang

Huachao Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huachao Mao', 18)}}的其他基金

FMSG: Cyber: 3D Printing of Holographic Optical Processors
FMSG:网络:全息光学处理器的 3D 打印
  • 批准号:
    2328362
  • 财政年份:
    2024
  • 资助金额:
    $ 51.05万
  • 项目类别:
    Standard Grant

相似国自然基金

多模式音乐实践提高人工耳蜗植入者言语和音乐感知表现的试验研究
  • 批准号:
    82301301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多组学分析赛马肠道微生物增强宿主运动表现的作用机制
  • 批准号:
    32360016
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华南埃迪卡拉纪Shuram事件不同表现形式的天文年代学约束
  • 批准号:
    42302129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
解析人类意志:分离自主动作和控制信念对认知表现的促进作用
  • 批准号:
    32300883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏是工作的对立面吗?游戏式工作对员工和团队绩效表现的影响机制研究
  • 批准号:
    72302024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Prapela® SVS incubator pad: A cost-effective stochastic vibrotactile device to improve the clinical course of infants with apnea of prematurity.
Prapela® SVS 保温箱垫:一种经济高效的随机振动触觉设备,可改善早产儿呼吸暂停婴儿的临床病程。
  • 批准号:
    10576754
  • 财政年份:
    2023
  • 资助金额:
    $ 51.05万
  • 项目类别:
Receptor-Targeted Fluorescence-Guided Surgery in Pancreatic Neuroendocrine Tumors
胰腺神经内分泌肿瘤受体靶向荧光引导手术
  • 批准号:
    10522096
  • 财政年份:
    2022
  • 资助金额:
    $ 51.05万
  • 项目类别:
Creating New Tactile Sensations for Tactile Aids with Designer Materials
使用设计师材料为触觉辅助工具创造新的触觉感觉
  • 批准号:
    10556425
  • 财政年份:
    2022
  • 资助金额:
    $ 51.05万
  • 项目类别:
Low-Cost Refreshable Full-Page Braille Display with High Reliability
高可靠性低成本可刷新全页盲文显示器
  • 批准号:
    10482654
  • 财政年份:
    2022
  • 资助金额:
    $ 51.05万
  • 项目类别:
Receptor-Targeted Fluorescence-Guided Surgery in Pancreatic Neuroendocrine Tumors
胰腺神经内分泌肿瘤受体靶向荧光引导手术
  • 批准号:
    10654865
  • 财政年份:
    2022
  • 资助金额:
    $ 51.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了