CAREER: Ribosome-inspired Synthesis of Precision Polymers
职业:核糖体启发的精密聚合物合成
基本信息
- 批准号:2317652
- 负责人:
- 金额:$ 67.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nature builds very large molecules (so called polymers) with molecular assembly lines. Crucial for life, these assembly lines add building blocks to growing polymer chains one after another in a specific order. This is how DNA and RNA are formed. In this project, Dr. Schneebeli is imitating the natural assembly-line approach to create well-defined polymeric materials. While this research focuses on enabling and understanding artificial molecular assembly lines, the well-defined polymers created may ultimately be useful materials for a variety of important applications. The artificial molecular assembly lines are created by connecting a catalyst to the polymers with rings that slide along the growing chains. This catalyst adds individual building blocks to the growing polymers one by one. In addition, Dr. Schneebeli is engaging the public in polymer chemistry through K-12 outreach at a local science museum (ECHO Lake Aquarium and Science Center in Burlington, VT) and at local high schools. For this outreach, Dr. Schneebeli is inventing interactive dynamic models. These models lead K-12 students to discover key aspects of polymer growth independently and foster independent creative thinking within the future STEM workforce.With support from the Chemical Catalysis Program of the Chemistry Division, Dr. Schneebeli of the University of Vermont is learning how to enable new polymerization mechanisms that could ultimately result in molecular assembly lines for sequence-defined, pi-conjugated polymers. Inspired by how Nature creates sequence-defined, functional macromolecules, Dr. Schneebeli is creating special interlocked catalysts, which can transform difficult-to-control step polymerizations into robust living chain-growth processes. While efficient chain-growth processes exist for numerous conjugated, cyclic, and hyperbranching monomers, this research explores a universal chain-growth strategy for general monomers, many of which cannot yet be polymerized in a controlled manner. Dr. Schneebeli's design prevents the catalysts from falling off the polymers, thus rendering this new living polymerization methodology fully chain-transfer free. Dr. Schneebeli is utilizing this new polymerization technique to enable the enzyme-free translation of DNA templates into diverse, pi-conjugated precision polymers, in a manner analogous to how the ribosome builds proteins. In support of the broader impacts of the project, Dr. Schneebeli is actively engaged in K-12 outreach with special macroscopic dynamic models. These models are devised to lead K-12 students to discover qualitative and quantitative aspects of different polymerization mechanisms to foster discovery-based reasoning and creative thinking among the future STEM workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大自然用分子组装线构建了非常大的分子(所谓的聚合物)。对于生命至关重要的是,这些装配线为生长的聚合物链增添了构建块,以特定的顺序接一个地。这就是形成DNA和RNA的方式。 在这个项目中,Schneebeli博士正在模仿天然装配线方法,以创建定义明确的聚合物材料。尽管这项研究的重点是启用和理解人工分子装配线,但最终创建的明确定义的聚合物可能是各种重要应用的有用材料。人工分子组装线是通过将催化剂与沿着不断增长的链滑动的环连接到聚合物的情况下创建的。该催化剂将单个的构建块添加到生长的聚合物一一。此外,Schneebeli博士在当地科学博物馆(Echo Lake Lake Aquarium and Science Center in Burlington,VT)和当地高中与公众参与聚合物化学。对于这种宣传,Schneebeli博士正在发明交互式动态模型。 These models lead K-12 students to discover key aspects of polymer growth independently and foster independent creative thinking within the future STEM workforce.With support from the Chemical Catalysis Program of the Chemistry Division, Dr. Schneebeli of the University of Vermont is learning how to enable new polymerization mechanisms that could ultimately result in molecular assembly lines for sequence-defined, pi-conjugated polymers. Schneebeli博士受到自然如何创建序列定义的功能性大分子的启发,正在创建特殊的互锁催化剂,这可以将难以控制的步骤聚合转化为强大的生活链生长过程。尽管有许多共轭,循环和超支单体存在有效的链生长过程,但该研究探讨了通用链生长策略的通用链生长策略,其中许多尚无法以受控方式聚合。 Schneebeli博士的设计阻止了催化剂从聚合物中脱落,从而使这种新的生活聚合方法完全没有链条转移。 Schneebeli博士正在利用这种新的聚合技术来使DNA模板不含酶翻译为多种多样的PI偶联精度聚合物,其方式与核糖体构建蛋白质的方式相似。为了支持该项目的广泛影响,Schneebeli博士通过特殊的宏观动态模型积极从事K-12外展。这些模型被设计为导致K-12学生发现不同聚合机制的定性和定量方面,以在未来的STEM劳动力中促进基于发现的推理和创造性思维。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力和更广泛影响的评估来通过评估来支持的,这是值得的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Helical Molecular Springs with Varying Spring Constants
具有不同弹簧常数的螺旋分子弹簧
- DOI:10.1002/anie.202209772
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Murphy, Kyle E.;McKay, Kyle T.;Schenkelberg, Mica;Sharafi, Mona;Vestrheim, Olav;Ivancic, Monika;Li, Jianing;Schneebeli, Severin T.
- 通讯作者:Schneebeli, Severin T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Severin Schneebeli其他文献
Severin Schneebeli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Severin Schneebeli', 18)}}的其他基金
CAREER: Ribosome-inspired Synthesis of Precision Polymers
职业:核糖体启发的精密聚合物合成
- 批准号:
1848444 - 财政年份:2019
- 资助金额:
$ 67.86万 - 项目类别:
Continuing Grant
Programmable Catalysts Designed to Replicate Flexible Polymers
旨在复制柔性聚合物的可编程催化剂
- 批准号:
1609137 - 财政年份:2016
- 资助金额:
$ 67.86万 - 项目类别:
Continuing Grant
相似国自然基金
COPS7B调控核糖体生物发生促进结肠癌演进的作用及机制研究
- 批准号:82303027
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新的II型核糖体失活蛋白——蒜头果蛋白的晶体结构与功能研究
- 批准号:32360226
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
核糖体蛋白RPL35A调节FOXO1与SIRT2乙酰化解离诱导自噬促进非小细胞肺癌发生发展及获得性耐药的机制研究
- 批准号:82360461
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
光控钙通道调节脊髓性肌萎缩症细胞骨架和核糖体的功能研究
- 批准号:82302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宿主Shiftless蛋白调控乙型脑炎病毒核糖体移码的分子机制
- 批准号:32302907
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
多糖核酸複合体を利用したペプチド医薬送達システムの開発と自己免疫疾患治療への応用
利用多糖核酸复合物开发肽药物递送系统及其在自身免疫性疾病治疗中的应用
- 批准号:
24KJ0198 - 财政年份:2024
- 资助金额:
$ 67.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
太陽系小天体におけるアミノ酸・糖・核酸塩基の形成
太阳系小天体中氨基酸、糖和核碱基的形成
- 批准号:
23K25982 - 财政年份:2024
- 资助金额:
$ 67.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
- 批准号:
BB/X007294/1 - 财政年份:2024
- 资助金额:
$ 67.86万 - 项目类别:
Research Grant
Genome-wide translational responses to stress: a focus on ribosome stalling
全基因组对压力的翻译反应:关注核糖体停滞
- 批准号:
BB/Y000080/1 - 财政年份:2024
- 资助金额:
$ 67.86万 - 项目类别:
Research Grant
A synthetic biology approach to unlocking the role of the ribosome in cell competition
揭示核糖体在细胞竞争中的作用的合成生物学方法
- 批准号:
489621 - 财政年份:2023
- 资助金额:
$ 67.86万 - 项目类别:
Operating Grants