Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
基本信息
- 批准号:2234032
- 负责人:
- 金额:$ 27.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This collaborative project between University of North Carolina at Charlotte (UNCC) and Clemson University (Clemson) aims at addressing significant national challenges and needs, namely in the fields of artificial intelligence and clean electric power and energy systems. While growing in popularity and diversity of applications, deep learning (DL) methods nonetheless confront challenges especially for modeling complex systems. These include lack of robustness, scalability, and composability. The research outcomes of this collaborative project will be: i) mathematical tools for understanding and designing a graph-optimized Cellular Computational Network (CCN) for complex system modeling and optimization; CCN suggests a composable modularity that can divide a large system into small subsystems with corresponding computational cells and ii) empowering the operation of carbon-free electric power distribution systems (EPDSs), with goals of improving energy sustainability (while avoiding climate disasters), energy security, and electricity infrastructure reliability. Furthermore, this collaborative project will provide unique research training to graduate and undergraduate students in the disciplines of artificial intelligence, machine learning, and power systems engineering at the two institutions. The state-of-the-art smart grid equipment at Real-Time Power and Intelligent Systems Lab at Clemson and high-performance computing systems and AI equipment at Synergistic Human+AI Research lab at UNCC will be used to impact outreach activities to high school students. Underrepresented minority and women groups will be recruited to participate in the research at the two institutions. Therefore, this project contributes to the creation of a new, diverse workforce knowledgeable in machine learning and AI, smart grid/power system technologies, and renewable energy. Our approach to address the challenging problem of complex system modeling and optimization constitute a novel blend of interdisciplinary study in statistical learning theory, graph theory, control theory, and optimization theory that will lead to novel dynamic system modeling. The project proposes a principled framework and mathematical validation to 1) automatically infer a graph topology from data, 2) develop multi-resolution graph evaluation for reinforcement learning (RL)-based refinement, 3) provide novel and stable reward function design principle for a continuously evolving CCN model, and thus 4) optimize the voltage profile in an EPDS with distributed energy resources. Overall, our principled mathematical tools for graph-optimized CCN models will broaden the scope of theory and applications in an electric power distribution system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北卡罗来纳大学夏洛特分校 (UNCC) 和克莱姆森大学 (Clemson) 之间的这一合作项目旨在解决重大的国家挑战和需求,即人工智能和清洁电力和能源系统领域。尽管应用日益普及和多样化,深度学习 (DL) 方法仍然面临着挑战,尤其是在复杂系统建模方面。其中包括缺乏稳健性、可扩展性和可组合性。该合作项目的研究成果将是:i)用于理解和设计用于复杂系统建模和优化的图优化蜂窝计算网络(CCN)的数学工具; CCN 提出了一种可组合的模块化,可以将大型系统划分为具有相应计算单元的小型子系统,ii) 增强无碳电力分配系统(EPDS)的运行,其目标是提高能源可持续性(同时避免气候灾害)、能源安全和电力基础设施可靠性。此外,该合作项目将为两所机构的人工智能、机器学习和电力系统工程学科的研究生和本科生提供独特的研究培训。克莱姆森实时电力和智能系统实验室最先进的智能电网设备以及北卡罗来纳大学协同人类+人工智能研究实验室的高性能计算系统和人工智能设备将用于影响高中的外展活动学生。代表性不足的少数族裔和妇女群体将被招募参与这两个机构的研究。因此,该项目有助于打造一支熟悉机器学习和人工智能、智能电网/电力系统技术和可再生能源的新型、多元化的劳动力队伍。 我们解决复杂系统建模和优化这一挑战性问题的方法构成了统计学习理论、图论、控制理论和优化理论等跨学科研究的新颖融合,这将带来新颖的动态系统建模。该项目提出了一个原则框架和数学验证,以 1) 从数据中自动推断图拓扑,2) 为基于强化学习 (RL) 的细化开发多分辨率图评估,3) 为不断发展的 CCN 模型,从而 4) 优化具有分布式能源的 EPDS 中的电压分布。总体而言,我们用于图优化 CCN 模型的原则性数学工具将扩大配电系统的理论和应用范围。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ganesh Venayagamoorthy其他文献
Ganesh Venayagamoorthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ganesh Venayagamoorthy', 18)}}的其他基金
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318612 - 财政年份:2023
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: CCF: SHF: MSI/HSI Research Capacity Building via Secure and Efficient Hardware Implementation of Cellular Computational Networks
合作研究:CISE-MSI:DP:CCF:SHF:通过安全高效的蜂窝计算网络硬件实现进行 MSI/HSI 研究能力建设
- 批准号:
2131070 - 财政年份:2021
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Collaborative Research: Planning Grant: I/UCRC for Real-Time Intelligence for Smart Electric Grid Operations (RISE)
合作研究:规划资助:I/UCRC 智能电网运营实时智能 (RISE)
- 批准号:
1464637 - 财政年份:2015
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Collaborative Research: An Intelligent Restoration System for a Self-healing Smart Grid (IRS-SG)
合作研究:用于自愈智能电网的智能恢复系统(IRS-SG)
- 批准号:
1408141 - 财政年份:2014
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Scalable Intelligent Power Monitoring and Optimal Control of Distributed Energy Systems Using Adaptive Critics
使用自适应批评的分布式能源系统的可扩展智能电力监控和优化控制
- 批准号:
1308192 - 财政年份:2013
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
AIR Option 2: Research Alliance Situational Intelligence for Smart Grid Optimization and Intelligent Control
AIR选项2:智能电网优化和智能控制研究联盟态势智能
- 批准号:
1312260 - 财政年份:2013
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
CAREER: Scalable Learning and Adaptation with Intelligent Techniques and Neural Networks for Reconfiguration and Survivability of Complex Systems
职业:利用智能技术和神经网络进行可扩展的学习和适应,以实现复杂系统的重新配置和生存能力
- 批准号:
1231820 - 财政年份:2012
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
Collaborative Research: Computational Intelligence Methods for Dynamic Stochastic Optimization of Smart Grid Operation with High Penetration of Renewable Energy
合作研究:可再生能源高渗透智能电网运行动态随机优化的计算智能方法
- 批准号:
1232070 - 财政年份:2012
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
EFRI-COPN: Neuroscience and Neural Networks for Engineering the Future Intelligent Electric Power Grid
EFRI-COPN:用于设计未来智能电网的神经科学和神经网络
- 批准号:
1238097 - 财政年份:2012
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
RAPID: Impact of Earthquakes on the Electricity Infrastructure
RAPID:地震对电力基础设施的影响
- 批准号:
1216298 - 财政年份:2012
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
- 批准号:
2212519 - 财政年份:2022
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134178 - 财政年份:2022
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134274 - 财政年份:2022
- 资助金额:
$ 27.59万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
- 批准号:
2212261 - 财政年份:2022
- 资助金额:
$ 27.59万 - 项目类别:
Standard Grant