Predicting flood-induced flow and sediment dynamics using data-driven physics-informed models

使用数据驱动的物理模型预测洪水引起的流量和沉积物动力学

基本信息

  • 批准号:
    2233986
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-15 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

It is vital to understand the physics of flood flow in rivers. Such understanding can help practicing engineers, researchers, and stakeholders (a) appropriately design infrastructures along and across rivers and (b) better protect the river environment. To understand the flood flow in rivers, this project will develop and utilize artificial intelligence to produce mean flow characteristics of the flood flow and riverbed topography. The developed artificial intelligence algorithms will enable reliable flood flow prediction at a small fraction of the computational cost of existing models. Thus, this research will benefit society by providing practicing engineers and stakeholders with modeling tools to (a) predict flood impacts on the stability of infrastructure in natural waterways and (b) evaluate the efficiency of flood mitigation strategies. The project will support two graduate students for four years and engage 12 undergraduates in summer research activities relevant to machine learning and flood prediction. As a part of this project, underserved adolescents in a non-secure detention center in New York will be trained in computer programing and simple machine learning.The research goals of this project include (a) improving the existing capabilities of high-fidelity numerical modeling tools to enable physics-based simulations of floods in natural waterways, (b) applying the high-fidelity model to evaluate flood impacts on the stability of infrastructure installed in large-scale waterways, and (c) employing the high-fidelity flood simulation results of large-scale rivers to inform and develop machine learning algorithms for efficient and affordable prediction of flood impacts on infrastructure and potentially transform the field of flood prediction research. This project will involve a group of practitioners from private, local, and federal agencies to learn how to use the developed tools. The research and educational objectives of this proposal will result in (a) advancement of knowledge regarding the complex interactions among flood flow, waterway, vegetation, and infrastructure; (b) promotion of educational performance by (i) engaging underserved adolescents of a non-secure detention center in STEM, (ii) encouraging the participation of underrepresented groups in research, (iii) involving graduate and undergraduate students in multidisciplinary research, and (iv) developing a new interdisciplinary graduate course; and (c) broad dissemination of high-fidelity models and machine learning through online repositories and journal publications for free access by practitioners and the scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解河流洪水的物理原理至关重要。这种理解可以帮助实践工程师、研究人员和利益相关者(a)正确设计河流沿岸和跨河流的基础设施,以及(b)更好地保护河流环境。为了了解河流的洪水流量,该项目将开发并利用人工智能来产生洪水流量和河床地形的平均流量特征。开发的人工智能算法将以现有模型计算成本的一小部分实现可靠的洪水流量预测。因此,这项研究将为执业工程师和利益相关者提供建模工具,以(a)预测洪水对自然水道基础设施稳定性的影响,以及(b)评估防洪策略的效率,从而造福社会。该项目将支持两名研究生为期四年,并让 12 名本科生参与与机器学习和洪水预测相关的夏季研究活动。作为该项目的一部分,纽约一个不安全的拘留中心中服务不足的青少年将接受计算机编程和简单机器学习的培训。该项目的研究目标包括(a)提高高保真数值建模的现有能力能够对自然水道中的洪水进行基于物理的模拟的工具,(b) 应用高保真模型来评估洪水对大型水道中安装的基础设施稳定性的影响,以及 (c) 利用高保真洪水模拟结果的大型河流提供信息并开发机器学习算法,以高效且经济的方式预测洪水对基础设施的影响,并有可能改变洪水预测研究领域。该项目将涉及一组来自私人、地方和联邦机构的从业者,以学习如何使用开发的工具。该提案的研究和教育目标将导致(a)提高有关洪水流、水道、植被和基础设施之间复杂相互作用的知识; (b) 通过 (i) 让不安全拘留中心服务不足的青少年参与 STEM,(ii) 鼓励代表性不足的群体参与研究,(iii) 让研究生和本科生参与多学科研究,以及 ( iv) 开发新的跨学科研究生课程; (c) 通过在线存储库和期刊出版物广泛传播高保真模型和机器学习,供从业者和科学界免费访问。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Khosronejad其他文献

On the impact of debris accumulation on power production of marine hydrokinetic turbines: Insights gained via LES
关于碎片堆积对海洋水力涡轮机发电的影响:通过 LES 获得的见解
  • DOI:
    10.1016/j.taml.2024.100524
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mustafa Aksen;K. Flora;Hossein Seyedzadeh;Mehrshad Gholami Anjiraki;Ali Khosronejad
  • 通讯作者:
    Ali Khosronejad
Efficient degradation of various recalcitrant azo dyes in aqueous medium by immobilized Origanum vulgare peroxidase
固定化牛至过氧化物酶有效降解水介质中各种顽固偶氮染料
  • DOI:
    10.1186/s42834-023-00190-x
  • 发表时间:
    2023-09-12
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Mahsa Golbabaie;Behzad Gharahchei;F. Mirazizi;Alireza Abbasi Baharanchi;Ali Khosronejad;Ali Asghar Karkhanie;K. Haghbeen
  • 通讯作者:
    K. Haghbeen
On the efficacy of facial masks to suppress the spreading of pathogen-carrying saliva particles during human respiratory events: Insights gained via high-fidelity numerical modeling
关于口罩在人类呼吸事件期间抑制携带病原体的唾液颗粒传播的功效:通过高保真数值模型获得的见解
  • DOI:
    10.18103/mra.v12i5.5441
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hossein Seyedzadeh;Jonathan Craig;Ali Khosronejad
  • 通讯作者:
    Ali Khosronejad

Ali Khosronejad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Khosronejad', 18)}}的其他基金

Collaborative Research: Linking turbulent flow dynamics to meandering river migration
合作研究:将湍流动力学与蜿蜒河流迁移联系起来
  • 批准号:
    1823121
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

流域洪水资源利用的耦合协调发展与风险效益分摊机制研究
  • 批准号:
    52379027
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高海拔山区洪水泥石流灾害链高性能集成水动力模拟框架
  • 批准号:
    42311530063
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
洪水预报实时校正方法研究
  • 批准号:
    52379007
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
黄河源洪水成因解析和未来变化预估
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
北天山地区短生命周期冰湖溃决机理与洪水过程研究
  • 批准号:
    42301140
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Regulation of adaptive responses to flood-induced hypoxia in Marchantia polymorpha
地钱对洪水缺氧的适应性反应的调节
  • 批准号:
    BB/X001059/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Can we mitigate flood induced by heavy storms using forest above ground system?
我们可以利用森林地上系统减轻暴风雨引发的洪水吗?
  • 批准号:
    22K19871
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Coastal and estuarine sediment archives for flood-induced pollution in subtropic / tropic areas – a proof-of-concept study
亚热带/热带地区洪水引起的污染的沿海和河口沉积物档案——概念验证研究
  • 批准号:
    423690112
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grants
Assessing the Impacts of Coastal Flood-Induced Relocation on Local Jurisdictions
评估沿海洪水引起的搬迁对当地管辖区的影响
  • 批准号:
    1920478
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Resilience of National Transport Networks to Flood-induced Bridge Failures
国家交通网络对洪水引起的桥梁故障的恢复能力
  • 批准号:
    EP/R00742X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了