Collaborative Research: Using a weather model and geologic data to test tectonic mechanisms in an intercontinental setting: The Altai Mountains of Central Asia
合作研究:利用天气模型和地质数据测试洲际环境中的构造机制:中亚阿尔泰山脉
基本信息
- 批准号:2316736
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The height and shape of mountain ranges exert a profound influence on the world around us. Mountains host a variety of ecological habitats, provide much of the water and nutrients necessary for life, the critical minerals needed for society, and influence climate and weather patterns. The size and shape of mountains reflect the underlying solid Earth processes responsible for how the crust deforms, for earthquakes, and for related natural hazards. Despite their importance, it remains exceptionally difficult to recover the history of mountains including how changes in their height and shape interact with the atmosphere to drive climate and weather. This project seeks to apply new advances in the atmospheric and geosciences to a natural experiment in central Asia where the height and shape of the Altai Mountains over the past 50 million years are thought to have precipitated a major change in atmospheric circulation and in climate. The Altai are one of the major ranges in Asia that substantially modify regional climate and ecosystems and spawn some of the largest intracontinental earthquakes ever recorded. This research will use a novel weather model to predict changes in atmospheric circulation and climate in response to the size, height, and growth history of the Altai. These model predictions will be measured against field and laboratory data gleaned from the sediments shed from the Altai. Using rock magnetic data preserved in the sediments, and the steepness of river channels carved into the mountains, the principal investigators will be able to construct an age model consistent with the onset and growth history of the Altai range. This interdisciplinary approach will be pursued by a multi-university, diverse team in the U.S. that includes early-career professors, graduate students and undergraduates in collaboration with Mongolian colleagues at the Institute for Astronomy and Geophysics. The project will train three PhD students, three early-career scientists, and one undergraduate in inter-disciplinary geosciences and build international exchange opportunities. The results of this research will improve understanding of the coupling among solid Earth and atmospheric processes and contribute to addressing societal challenges, such as building resistance to climate change and to earthquake-related natural hazards. Mountain topography reflects complex couplings among tectonic, dynamic, and surficial processes and influences climatic evolution, marine and terrestrial biogeochemistry, and even the development of biodiversity. Unfortunately, the climatic proxies which are so often used to reconstruct past topography are themselves dependent upon a variety of other factors. Consequently, constraining the tectonic and/or dynamic processes that are responsible for the height of mountains remains exceptionally difficult. This project will leverage novel advances in the atmospheric sciences to understand topographic growth beyond the simple upslope model of orographic rainout. The project focuses on the Altai Mountains of northern Central Asia, a poorly understood Cenozoic rejuvenation of the Central Asia Orogenic Belt that rises more than 4 kilometers, casts a substantial rain shadow, and is associated with some of the largest intracontinental earthquakes on record. Altai uplift has been variously attributed to far-field stress propagation from the collision of India and Eurasia or to dynamic support from a mantle plume, a subducting slab, or lithospheric delamination. Each of these uplift mechanisms predict a unique spatial and temporal pattern of rock uplift and of regional climate change, based upon how and when these uplift mechanisms modified the height, shape, and orientation of the Altai. Existing data are contradictory; sedimentary, geomorphic, and thermochronologic data indicate that tectonic uplift began in the Paleogene, whereas paleoclimate data from both windward and leeward basins suggest no clear climatic change until the late Miocene, when there appears to be substantial aridification in western Mongolia. The project focuses on collecting new spatially-resolved rock uplift data using inversions of fluvial topography and new stable and clumped isotope records of paleoclimate from leeside basins. The age model for both rock uplift and of climatic change across western Mongolia will be constrained by magneto- and cyclostratigraphic-based age models of adjacent, syn-deformational basin sediments. The Weather Research and Forecasting model will be used to predict the climate impact of distinct Altai topographic histories. Combined, these data sets permit tests of the theories that seek to explain Cenozoic Altai uplift.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
山脉的高度和形状对我们周围的世界产生深远的影响。山脉拥有各种生态栖息地,提供生命所需的大量水和养分以及社会所需的关键矿物质,并影响气候和天气模式。山脉的大小和形状反映了导致地壳变形、地震和相关自然灾害的潜在固体地球过程。尽管山脉很重要,但恢复山脉的历史仍然异常困难,包括山脉高度和形状的变化如何与大气相互作用以驱动气候和天气。该项目旨在将大气和地球科学的新进展应用于中亚的自然实验,人们认为过去 5000 万年来阿尔泰山脉的高度和形状促成了大气环流和气候的重大变化。阿尔泰山脉是亚洲的主要山脉之一,它极大地改变了区域气候和生态系统,并引发了一些有记录以来最大的大陆内地震。这项研究将使用一种新颖的天气模型来预测大气环流和气候的变化,以响应阿尔泰山的大小、高度和生长历史。这些模型预测将根据从阿尔泰地区沉积物中收集的现场和实验室数据进行测量。利用沉积物中保存的岩石磁性数据以及山脉中河道的陡峭程度,主要研究人员将能够构建与阿尔泰山脉的起源和生长历史一致的年龄模型。这种跨学科方法将由美国的多所大学、多元化团队与天文学和地球物理研究所的蒙古同事合作实施,其中包括早期职业教授、研究生和本科生。该项目将培养三名博士生、三名早期职业科学家和一名跨学科地球科学本科生,并建立国际交流机会。这项研究的结果将增进对固体地球和大气过程之间耦合的理解,并有助于解决社会挑战,例如增强对气候变化和地震相关自然灾害的抵抗力。 山地地形反映了构造、动力和地表过程之间的复杂耦合,影响着气候演化、海洋和陆地生物地球化学,甚至生物多样性的发展。不幸的是,经常用于重建过去地形的气候指标本身取决于各种其他因素。因此,限制导致山脉高度的构造和/或动态过程仍然异常困难。该项目将利用大气科学的新进展来了解地形生长,超越简单的地形降雨上坡模型。该项目重点关注中亚北部的阿尔泰山脉,这是一条人们知之甚少的中亚造山带新生代复兴区,海拔超过 4 公里,投射出巨大的雨影,并与一些有记录以来最大的大陆内地震有关。阿尔泰隆起有多种归因于印度和欧亚大陆碰撞产生的远场应力传播,或归因于地幔柱、俯冲板片或岩石圈分层的动态支撑。这些隆起机制中的每一个都根据这些隆起机制如何以及何时改变阿尔泰山的高度、形状和方向来预测岩石隆起和区域气候变化的独特时空模式。现有数据相互矛盾;沉积、地貌和热年代学数据表明,构造隆升始于古近纪,而来自迎风盆地和背风盆地的古气候数据表明,直到中新世晚期,蒙古西部似乎出现了严重的干旱化,气候才出现明显的变化。该项目的重点是利用河流地形反演以及背风盆地古气候的新稳定和聚集同位素记录来收集新的空间分辨岩石隆起数据。蒙古西部岩石隆起和气候变化的年龄模型将受到邻近同变形盆地沉积物基于磁力和旋回地层的年龄模型的约束。天气研究和预报模型将用于预测不同的阿尔泰地形历史对气候的影响。综合起来,这些数据集允许对试图解释新生代阿尔泰隆起的理论进行测试。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Baldwin其他文献
Students Tele-All: Self-Efficacy and Self-Reflection as Measures of Student Success in Telepractice Training
学生远程培训:自我效能和自我反思作为学生远程实习培训成功的衡量标准
- DOI:
10.3390/educsci12050302 - 发表时间:
2022 - 期刊:
- 影响因子:3
- 作者:
Amanda Worek;Kathryn K. Sabo;Emily Z. Eddy;Laura Plummer;Jane Baldwin;Patricia A. Reidy;Mary W. Hildebrand;Mary Riotte;John Wong - 通讯作者:
John Wong
How Doctor of Physical Therapy Students Overcome Academic Challenges to Achieve First-Attempt Success on the National Physical Therapy Examination: A Mixed Methods Study
物理治疗博士生如何克服学术挑战,在国家物理治疗考试中取得第一次成功:一项混合方法研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3
- 作者:
Jane Baldwin;C. Schmidt;Laura Plummer;Perman Gochyyev;Jillian E. Battista;Simran Kaur;Keshrie Naidoo - 通讯作者:
Keshrie Naidoo
Jane Baldwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Baldwin', 18)}}的其他基金
Computer Science and Mathematics Scholarship Program
计算机科学和数学奖学金计划
- 批准号:
0122548 - 财政年份:2002
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似国自然基金
煤矸石混凝土受弯构件使用性能与设计方法研究
- 批准号:52378191
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于“空间-使用”影响机制的城市水敏性开放空间平灾复合的设计策划研究
- 批准号:52308026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
酒精使用障碍肠道微生物菌群特征及其色氨酸-犬尿氨酸代谢机制研究
- 批准号:82371496
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
静脉溶栓治疗无效的缺血性卒中早期使用替罗非班治疗的多中心、双盲、双模拟、随机对照临床研究
- 批准号:82371334
- 批准年份:2023
- 资助金额:74 万元
- 项目类别:面上项目
使用单分子磁镊研究DNA纽结
- 批准号:12374216
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
- 批准号:
2334798 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant