LEAPS-MPS: Machine Learning-guided Identification of Mechanically Stabilizing Solid-state Electrolytes

LEAPS-MPS:机器学习引导的机械稳定固态电解质的识别

基本信息

  • 批准号:
    2316667
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY Lithium-ion batteries are playing an increasingly important role in our daily lives, powering devices like smartphones, tablets, and electric vehicles. Current batteries, however, have major limitations such as safety issues and the need for frequent recharging. To meet the growing demand for energy storage, longer-lasting batteries that can store more energy are needed. A promising solution is to replace the graphite used in the negative electrode of batteries with lithium metal, which has the potential to store about 10 times more energy. However, a major challenge with lithium metal is the formation of dendrites—small, branch-like structures that grow over time and can cause short circuits, leading to battery failure. This project aims to understand how to prevent dendrite formation by studying the mechanical properties of materials and identifying electrolytes with superior mechanical characteristics. The research is conducted at the University of Houston, a major Hispanic-Serving Institution, which provides a fertile ground for broadening participation from underrepresented groups. Graduate and undergraduate students will be recruited for this project and professionally trained in the new cross-disciplinary area of big data, artificial intelligence, and computational materials science, which is highly relevant to national economic and scientific advancement.TECHNICAL SUMMARYThis project aims to discover solid materials with tailored mechanical properties to be used as electrolytes in all-solid-state batteries with lithium metal anode. Replacing the liquid electrolyte in commercial Li-ion batteries with solid-state electrolytes is considered the most promising approach to suppress dendrites due to the superior mechanical properties of solid materials. However, despite extensive research efforts, no solid material that can completely suppress dendrites has been successfully identified. There are several gaps in the current understanding of dendrite suppression, including (i) limited understanding of the criteria on mechanical properties, (ii) lack of tools to accurately probe the full mechanical behaviors of solid materials, and (iii) lack of a systematic approach to identifying new solid materials as candidate electrolytes. Based on recent theoretical and experimental work, the PI hypothesizes that mechanical anisotropy, characterized by the directional dependence of elastic properties, plays a significant role at the solid-solid interface between Li metal anode and a solid material, and can thus be leveraged to design solid-state electrolytes that suppress the formation of dendrites. The project embraces the principles of the Materials Genome Initiative (MGI) and establishes a unique data-driven approach for the production and analysis of anisotropic elastic properties of materials and the investigation of their effects on Li dendrite nucleation and growth. Specifically, the project will address the gaps by (i) developing uncertainty-quantified machine learning models to predict the full elastic tensors and thus anisotropic behaviors of materials and (ii) conducting high-throughput screening to identify mechanically stabilizing solid-state electrolytes. This machine learning-guided computational screening of Li-containing materials is an efficient and effective approach to identifying promising candidates for further experimental verification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要锂离子电池在我们的日常生活中发挥着越来越重要的作用,为智能手机、平板电脑和电动汽车等设备提供动力,但目前的电池存在安全问题和需要频繁充电等重大局限性。为了满足不断增长的能源存储需求,需要能够存储更多能量的更耐用的电池,一种有前途的解决方案是用锂金属代替电池负极中使用的石墨,锂金属的存储潜力约为10倍。然而,锂金属的一个主要挑战是枝晶的形成,这种小树枝状结构会随着时间的推移而生长,并可能导致短路,从而导致电池故障。该项目旨在通过研究枝晶的形成来了解如何防止枝晶的形成。该研究是在休斯敦大学进行的,该大学是一个主要的西班牙裔服务机构,为扩大代表性不足的群体的参与提供了肥沃的土壤。项目并在大数据、人工智能和计算材料科学等新的跨学科领域接受过专业培训,该领域与国民经济和科学进步高度相关。技术摘要该项目旨在发现具有定制机械性能的固体材料以供使用由于固体材料具有优异的机械性能,用固态电解质代替商用锂离子电池中的液体电解质被认为是抑制枝晶的最有前途的方法。然而,尽管进行了广泛的研究工作,但尚未成功识别出可以完全抑制枝晶的固体材料,目前对枝晶抑制的理解存在一些差距,包括(i)对机械性能标准的理解有限,(ii)缺乏。 (iii)缺乏系统的方法来识别新的固体材料作为候选电解质。根据最近的理论和实验工作,PI 推动了以方向依赖性为特征的机械各向异性。的弹性特性,在锂金属阳极和固体材料之间的固-固界面中发挥着重要作用,因此可以用来设计抑制枝晶形成的固态电解质。该项目遵循材料基因组计划(MGI)的原则。并建立了一种独特的数据驱动方法,用于生产和分析材料的各向异性弹性特性,并研究其对锂枝晶成核和生长的影响。具体来说,该项目将通过(i)开发不确定性量化来解决这一差距。机器学习模型来预测材料的全弹性张量,从而预测材料的各向异性行为,并且(ii)进行高通量筛选来识别机械稳定的固态电解质。这种机器学习引导的含锂材料的计算筛选是一种高效且有效的方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingjian Wen其他文献

CoeffNet: predicting activation barriers through a chemically-interpretable, equivariant and physically constrained graph neural network
CoeffNet:通过化学可解释、等变和物理约束的图神经网络预测激活障碍
  • DOI:
    10.1039/d3sc04411d
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Sudarshan Vijay;Maxwell C. Venetos;E. Spotte;Aaron D. Kaplan;Mingjian Wen;Kristin A. Persson
  • 通讯作者:
    Kristin A. Persson
A KIM-compliant potfit for fitting sloppy interatomic potentials: application to the EDIP model for silicon
用于拟合草率原子间势的符合 KIM 标准的 Potfit:在硅 EDIP 模型中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingjian Wen;Junhao Li;P. Brommer;R. Elliott;J. Sethna;E. Tadmor
  • 通讯作者:
    E. Tadmor
Data-Driven Prediction of Formation Mechanisms of Lithium Ethylene Monocarbonate with an Automated Reaction Network.
利用自动反应网络对乙烯单碳酸锂的形成机制进行数据驱动预测。
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Xiaowei Xie;Evan Walter Clark Spotte;Mingjian Wen;Hetal D Patel;Samuel M. Blau;K. Persson
  • 通讯作者:
    K. Persson
Development of Interatomic Potentials with Uncertainty Quantification: Applications to Two-dimensional Materials
  • DOI:
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingjian Wen
  • 通讯作者:
    Mingjian Wen

Mingjian Wen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Topological Enrichments in Enumerative Geometry
博士后奖学金:MPS-Ascend:枚举几何中的拓扑丰富
  • 批准号:
    2402099
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Fellowship Award
生理機能を再現するオルガノイド融合型MPSデバイスの開発
开发再现生理功能的类器官融合 MPS 装置
  • 批准号:
    23K26472
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ヒト脳関門の統合評価システムBrain-MPSの構築
人脑屏障综合评价系统Brain-MPS的构建
  • 批准号:
    24K18340
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
LEAPS-MPS: Fast and Efficient Novel Algorithms for MHD Flow Ensembles
LEAPS-MPS:适用于 MHD 流系综的快速高效的新颖算法
  • 批准号:
    2425308
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
LEAPS-MPS: Network Statistics of Rupturing Foams
LEAPS-MPS:破裂泡沫的网络统计
  • 批准号:
    2316289
  • 财政年份:
    2024
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了