LEAPS-MPS: Investigation on Spectral Geometry of Steklov Eigenvalues

LEAPS-MPS:Steklov 特征值的谱几何研究

基本信息

项目摘要

Already in the Middle Ages bell makers knew how to detect invisible cracks by sounding a bell on the ground before lifting it up to the belfry. Since then, the relations between sounds and geometric structures have been a central topic of interest in mathematics with important applications in the broader scientific community. Steklov eigenvalues play an important role in this context and, for example, are essential in electrical impedance tomography for medical imaging, and in the study of linear water waves in physics. In this project, the PI will reveal new relations between Steklov eigenvalues and the underlying geometry from which they are derived. Funds for the project will also support the PI’s efforts to make the research accessible and beneficial to students and young scholars and to promote the participation of underrepresented groups in mathematics, through mentoring and conference organization.This project involves two research directions tied to spectral geometry of Steklov eigenvalues. In one direction, the PI will study generic properties of Steklov eigenvalues and eigenfunctions and will investigate domain perturbations, differential forms and their applications to equidistribution theorems. In another direction, the PI will investigate Steklov eigenvalues on smooth metric spaces by studying collapsing manifolds. The PI will promote the participation of early career, female and other underrepresented group in mathematics as organizer of AMS special sessions and distinguished lectures series at Cal State, Long Beach. The PI will also organize career panels for undergraduate math majors, and a “Math Day at the Beach” for high school students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在中世纪,贝尔制造商已经知道如何通过在地面上发出铃铛,然后将其提升到钟楼,从而检测到无形的裂缝。从那时起,声音与几何结构之间的关系一直是在更广泛的科学界中具有重要应用的数学感兴趣的核心话题。 Steklov特征值在这种情况下起着重要的作用,例如,在医学成像的电阻抗中以及对物理学线性水波的研究中至关重要。在这个项目中,PI将揭示Steklov特征值与它们得出的基本几何形状之间的新关系。该项目的资金还将支持PI的努力,以使研究对学生和年轻学者有益,并通过心理和会议组织来促进代表性不足的小组参与数学。该项目涉及与Steklov Eigenvalues的光谱几何学相关的两个研究方向。在一个方向上,PI将研究Steklov特征值和特征功能的通用特性,并将研究域的扰动,差异形式及其在等均分配定理中的应用。在另一个方向上,PI将通过研究崩溃歧管来研究平滑度量空间上的steklov特征值。 PI将促进早期职业生涯,女性和其他代表性不足的小组在数学领域,作为AMS特殊会议和杰出讲座系列的组织者,在长滩加州州立大学。 PI还将为本科数学专业的职业小组组织职业小组,并为高中生举办“在海滩上的数学日”。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为是通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Lihan Wang其他文献

Numerical methods for stochastic differential equations based on Gaussian mixture
基于高斯混合的随机微分方程数值方法
Inhibition of Histone Deacetylases Prevents Cardiac Remodeling After Myocardial Infarction by Restoring Autophagosome Processing in Cardiac Fibroblasts
组蛋白脱乙酰酶的抑制通过恢复心脏成纤维细胞中的自噬体处理来预防心肌梗死后的心脏重塑
  • DOI:
    10.1159/000493672
    10.1159/000493672
  • 发表时间:
    2018-09
    2018-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yaping Wang;Panpan Chen;Lihan Wang;Jing Zhao;Zhiwei Zhong;Yingchao Wang;Jifeng Xu
    Yaping Wang;Panpan Chen;Lihan Wang;Jing Zhao;Zhiwei Zhong;Yingchao Wang;Jifeng Xu
  • 通讯作者:
    Jifeng Xu
    Jifeng Xu
Birth–death dynamics for sampling: global convergence, approximations and their asymptotics
抽样的生死动态:全局收敛、近似及其渐近
  • DOI:
    10.1088/1361-6544/acf988
    10.1088/1361-6544/acf988
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Yulong Lu;D. Slepčev;Lihan Wang
    Yulong Lu;D. Slepčev;Lihan Wang
  • 通讯作者:
    Lihan Wang
    Lihan Wang
TCT-878 A Next-Generation Transcatheter Heart Valve Used for Aortic Regurgitation
  • DOI:
    10.1016/j.jacc.2024.09.1040
    10.1016/j.jacc.2024.09.1040
  • 发表时间:
    2024-10-29
    2024-10-29
  • 期刊:
  • 影响因子:
  • 作者:
    Lihan Wang
    Lihan Wang
  • 通讯作者:
    Lihan Wang
    Lihan Wang
Park Plant Allocation Evaluation System Based on SBE
  • DOI:
    10.2991/isss-18.2018.143
    10.2991/isss-18.2018.143
  • 发表时间:
    2018-05
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lihan Wang
    Lihan Wang
  • 通讯作者:
    Lihan Wang
    Lihan Wang
共 16 条
  • 1
  • 2
  • 3
  • 4
前往

相似国自然基金

Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
  • 批准号:
    82303896
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
  • 批准号:
    42372341
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
  • 批准号:
    82370847
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
  • 批准号:
    52101371
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
  • 批准号:
    82101760
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

LEAPS-MPS: Investigation of Electrochromic Polymer Induced Plasmon Switching on Gold Nanocrystals and its Application for Smart Windows
LEAPS-MPS:金纳米晶体电致变色聚合物诱导等离子激元开关的研究及其在智能窗户中的应用
  • 批准号:
    2316845
    2316845
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Unveiling the Interplay of Chiral Transport, Magnetism, and Topology in Weyl Magnets: A Magneto-Optical Investigation
LEAPS-MPS:揭示外尔磁体中手性输运、磁性和拓扑的相互作用:磁光研究
  • 批准号:
    2317013
    2317013
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: A Systematic Investigation of Transient Behavior in RR Lyrae Variable Stars
LEAPS-MPS:对天琴座 RR 变星瞬态行为的系统研究
  • 批准号:
    2137787
    2137787
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
  • 批准号:
    2213443
    2213443
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant
LEAPS-MPS: Investigation of the Mechanism of Emergence of Collective Behavior in Motile Cilia Using Model Artificial Cilia
LEAPS-MPS:使用模型人工纤毛研究运动纤毛集体行为出现的机制
  • 批准号:
    2213371
    2213371
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
    $ 25万
  • 项目类别:
    Standard Grant
    Standard Grant