Clustered Coefficient Regression Model-Based Estimators in Small Area Estimation
小区域估计中基于聚类系数回归模型的估计器
基本信息
- 批准号:2316353
- 负责人:
- 金额:$ 21.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will develop model-based estimators for estimating population parameters in small areas. Small area estimation is an important problem in survey sampling when the sample sizes are not large enough to provide reliable estimates in small areas or domains. Model-based estimators based on auxiliary variables are widely used to increase the precision of estimators in survey sampling. However, if a heterogeneous relationship exists between the variable of interest and auxiliary variables, traditional models based on homogeneity will not accurately describe the relationship. This project will develop new model-based estimators based on more flexible regression models called clustered coefficient regression models. The new estimators will be applied to different national surveys, such as American Community Survey conducted by the U.S. Census Bureau. Results from the project will be used as examples in a course on survey sampling. Both undergraduate and graduate students will be involved in the research project. Publicly available R packages also will be developed.This research project will develop new model-based estimators based on clustered coefficient regression models using penalty functions, which also can borrow spatial or ordering information in different areas. The project will bridge the gap between clustered coefficient regression and model-based estimators. Three types of estimators in small area estimation will be studied. First, the project will develop new generalized regression estimators based on clustered coefficients for both linear regression models and logistic regression models. Second, the project will examine new unit level estimators based on clustered coefficient regression models, including an extension of the current linear model and the development of new estimators for binary data with consideration of random effects. Finally, the project will develop new area level estimators based on clustered coefficients, including an extension to proportions based on beta regression models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发基于模型的估计器,以估计小区域中的人口参数。当样本量不足以在小区域或域中提供可靠的估计值时,小面积估计是调查采样的重要问题。基于辅助变量的基于模型的估计器被广泛用于提高调查采样中估计器的精度。但是,如果感兴趣的变量和辅助变量之间存在异质关系,则基于同质性的传统模型将无法准确描述这种关系。该项目将基于更灵活的回归模型(称为群集系数回归模型)开发新的基于模型的估计器。新的估计量将应用于不同的国家调查,例如美国人口普查局进行的美国社区调查。该项目的结果将用作调查抽样课程的示例。本科生和研究生都将参与研究项目。该研究项目还将使用惩罚功能基于聚类系数回归模型开发新的基于模型的估计器,该项目还可以在不同领域借入空间或订购信息。该项目将弥合聚类系数回归与基于模型的估计器之间的差距。将研究小面积估计中的三种类型的估计器。首先,该项目将基于线性回归模型和逻辑回归模型的聚类系数开发新的广义回归估计器。其次,该项目将基于聚类系数回归模型检查新的单位级估计器,包括当前线性模型的扩展以及考虑随机效应的新估计器的开发。最后,该项目将根据集群系数开发新的区域级别估计器,包括基于Beta回归模型的比例扩展。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛的影响评估的评估来支持的。标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Wang其他文献
Iodine–triphenylphosphine mediated sulfenylation of imidazoheterocycles with sodium sulfinates
碘-三苯基膦介导的亚磺酸钠对咪唑杂环的磺酰化
- DOI:
10.1039/c4ra17237j - 发表时间:
2015-02 - 期刊:
- 影响因子:3.9
- 作者:
Xuhu Huang;Shucheng Wang;Bowen Li;Xin Wang;Zemei Ge;Runtao Li - 通讯作者:
Runtao Li
Polymorphisms in complement genes and risk of preeclampsia in Taiyuan, China
太原市补体基因多态性与子痫前期风险
- DOI:
10.1007/s00011-016-0968-4 - 发表时间:
2016-07 - 期刊:
- 影响因子:6.7
- 作者:
Weiwei Wu;Hailan Yang;Yongliang Feng;Ping Zhang;Shuzhen Li;Xin Wang;Tingting Peng;Fang Wang;Bingjie Xie;Pengge Guo;Mei Li;Ying Wang;Nan Zhao;Dennis Wang;Suping Wang;Yawei Zhang - 通讯作者:
Yawei Zhang
IEEE Access Special Section Editorial: Mission-Critical Sensors and Sensor Networks (MC-SSN)
IEEE Access 特别版块社论:关键任务传感器和传感器网络 (MC-SSN)
- DOI:
10.1109/access.2021.3068830 - 发表时间:
2021 - 期刊:
- 影响因子:3.9
- 作者:
Jinhwan Koh;Qilian Liang;Tariq S. Durrani;Xin Wang;Yonghui Li;Jing Liang - 通讯作者:
Jing Liang
Theoretical insights into nucleation of CO2 and CH4 hydrates for CO2 capture and storage
用于 CO2 捕获和储存的 CO2 和 CH4 水合物成核的理论见解
- DOI:
10.1039/c4cp03709j - 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
Xin Wang;David Sang;Jian Chen;Jianguo Mi - 通讯作者:
Jianguo Mi
A metal-free near-infrared fluorescent probe for tracking the glucose-induced fluctuations of carbon monoxide in living cells and zebrafish
一种无金属近红外荧光探针,用于跟踪活细胞和斑马鱼中葡萄糖诱导的一氧化碳波动
- DOI:
10.1016/j.snb.2019.04.084 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
Zuokai Wang;Caiyun Liu;Xin Wang;Qingxia Duan;Pan Jia;Hanchuang Zhu;Zilu Li;Xue Zhang;Xiaohua Ren;Baocun Zhu;Wenlong Sheng - 通讯作者:
Wenlong Sheng
Xin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Wang', 18)}}的其他基金
CAREER: Glycogen metabolism kick-starts photosynthesis in cyanobacteria
事业:糖原代谢启动蓝细菌的光合作用
- 批准号:
2414925 - 财政年份:2023
- 资助金额:
$ 21.46万 - 项目类别:
Continuing Grant
CAREER: Glycogen metabolism kick-starts photosynthesis in cyanobacteria
事业:糖原代谢启动蓝细菌的光合作用
- 批准号:
2042182 - 财政年份:2021
- 资助金额:
$ 21.46万 - 项目类别:
Continuing Grant
Collaborative Research: SWIFT: LARGE: MAC-on-MAC: A Spectrum Orchestrating Control Plane for Coexisting Wireless Systems
合作研究:SWIFT:LARGE:MAC-on-MAC:共存无线系统的频谱编排控制平面
- 批准号:
2030063 - 财政年份:2021
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
CIF: Small: Improving Sensing and Estimation with Co-array Techniques
CIF:小型:利用联合阵列技术改进传感和估计
- 批准号:
2007313 - 财政年份:2020
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Spatially Oversampled Dense Multi-Beam Millimeter-Wave Communications for Exponentially Increased Energy-Efficiency
SpecEES:协作研究:空间过采样密集多波束毫米波通信,以指数方式提高能源效率
- 批准号:
1731238 - 财政年份:2017
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
CRISP Type 2/Collaborative Research: Harnessing Interdependency for Resilience: Creating an "Energy Sponge" with Cloud Electric Vehicle Sharing
CRISP 类型 2/合作研究:利用相互依赖性实现弹性:通过云电动汽车共享创建“能源海绵”
- 批准号:
1637772 - 财政年份:2016
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
NeTS: Small: Fundamental Techniques for Incentive-aware, Efficient, and Reliable Cloudlet Management and Services
NetS:小型:激励感知、高效且可靠的 Cloudlet 管理和服务的基本技术
- 批准号:
1526843 - 财政年份:2015
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
Collaborative Research: Electronically-Scanned Wideband Digital Aperture Antenna Arrays using Multi-Dimensional Space-Time Circuit-Network Resonance: Theory and Hardware
合作研究:使用多维时空电路网络谐振的电子扫描宽带数字孔径天线阵列:理论和硬件
- 批准号:
1408247 - 财政年份:2014
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Cognitive and Efficient Spectrum Access in Autonomous Wireless Networks
合作研究:EARS:自主无线网络中的认知和高效频谱访问
- 批准号:
1247924 - 财政年份:2013
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
NEDG: A Universal Approach to Channel-Adaptive Resource Allocation and Scheduling for Wireless OFDM Networks
NEDG:无线 OFDM 网络信道自适应资源分配和调度的通用方法
- 批准号:
0831671 - 财政年份:2008
- 资助金额:
$ 21.46万 - 项目类别:
Standard Grant
相似国自然基金
可变面元问题对线性回归中决定系数的影响机制研究
- 批准号:42301471
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
隐马尔可夫变系数回归模型的贝叶斯分析
- 批准号:12361061
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
变系数回归模型中的伪回归问题:理论与实践
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
带网络结构的变系数自回归模型:理论及应用研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
协变量驱动的随机系数自回归模型的统计推断
- 批准号:11871028
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
相似海外基金
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2019
- 资助金额:
$ 21.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2018
- 资助金额:
$ 21.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2017
- 资助金额:
$ 21.46万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2016
- 资助金额:
$ 21.46万 - 项目类别:
Discovery Grants Program - Individual
Theory for quantile regression inference of time series and its applications
时间序列分位数回归推理理论及其应用
- 批准号:
15H02061 - 财政年份:2015
- 资助金额:
$ 21.46万 - 项目类别:
Grant-in-Aid for Scientific Research (A)