LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
基本信息
- 批准号:2316181
- 负责人:
- 金额:$ 24.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Permutation enumeration is the branch of enumerative and algebraic combinatorics concerned with counting permutations: linear arrangements of distinct objects. Questions in permutation enumeration are often motivated by other branches of mathematics—such as algebra, probability theory, and geometry—and have applications to scientific domains including theoretical computer science, genomics, and statistical mechanics. Enumerative results can be a sign of deeper mathematical structure, which sometimes can be expressed via algebraic objects called combinatorial Hopf algebras; in turn, this algebraic structure can be exploited to derive new enumerative results. This interplay between combinatorics and algebra is central to the first goal of this project, which is to advance the development and application of Hopf-algebraic methods in permutation enumeration. The second goal of this project is to establish DREAM (Discovering Research and Expanding Access to Mathematics), a summer experience for Davidson College students integrating mathematical research, professional development, and educational outreach.This project builds on previous work at the intersection of permutation enumeration, symmetric function theory, and combinatorial Hopf algebras. A classical result in this domain is Gessel’s run theorem, a reciprocity formula involving noncommutative symmetric functions which gives a systematic method for the enumeration of permutations with prescribed run lengths. One research objective is to lift the run theorem to the setting of noncommutative colored symmetric functions, which would lead to a general method for counting colored permutations with restrictions on colored run lengths. Another research objective is to study the distributions of inverse statistics (such as the inverse descent number and the inverse peak number) over alternating permutations and reverse-alternating permutations. The research component of the DREAM program focuses on combinatorial proofs in permutation enumeration, and student participants will engage in readings centered around the role of community in mathematics and DEIJ issues facing the mathematical community. DREAM participants will also work with the PI and collaborators from William A. Hough High School to organize an outreach event for the EOS program at Hough, which serves students of color and low-income students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
置换枚举是与计数排列有关的枚举和代数组合的分支:不同对象的线性排列。置换枚举中的问题通常是由数学的其他分支(例如代数,概率理论和几何学)引起的,并且在包括理论计算机科学,基因组学和统计力学等科学领域都有应用。枚举结果可以是更深的数学结构的迹象,有时可以通过称为组合Hopf代数的代数对象表示。反过来,可以探索这种代数结构以得出新的枚举结果。组合学和代数之间的这种相互作用是该项目的第一个目标的核心,即推进置换列出中Hopf-Elgebraic方法的开发和应用。该项目的第二个目标是建立梦想(发现研究并扩大了对数学的访问),戴维森学院学生的夏季经验,整合了数学研究,专业发展和教育范围。该项目基于固定枚举,对称功能理论和联合Hopf Elgebras的先前工作。该领域的一个经典结果是Gessel的Run定理,这是一种互惠公式,涉及非共同对称函数,该函数为枚举具有规定的运行长度的排列提供了系统方法。一个研究的目标是将运行定理提升为非交换性彩色对称函数的设置,这将导致一种对有色运行长度限制的有色排列的一般方法。另一个研究目的是研究替代排列和反向置换的反向统计数据(例如反下降数和反峰数)的分布。 Dream计划的研究组成部分着重于列出列举中的组合证明,学生参与者将参与围绕社区在数学和数学社区面临的DEIJ问题中的作用的读物。理想的参与者还将与William A. Hough高中的PI和合作者合作,为Hough组织EOS计划的外展活动,该活动为有色和低收入学生的学生提供服务。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响审查Criteria的评估来通过评估来诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Zhuang其他文献
Influence of soil bacteria and carbonic anhydrase on karstification intensity and regulatory factors in a typical karst area
典型岩溶区土壤细菌和碳酸酐酶对岩溶强度的影响及调控因素
- DOI:
10.1016/j.geoderma.2017.10.016 - 发表时间:
2018-03 - 期刊:
- 影响因子:6.1
- 作者:
Wang Chenwei;Li Wei;Shen Taiming;Cheng Wenli;Yan Zhuang;Yu Longjiang - 通讯作者:
Yu Longjiang
Using Stacked Sparse Auto-Encoder and Superpixel CRF for Long-Term Visual Scene Understanding of UGVs
使用堆叠稀疏自动编码器和超像素 CRF 实现 UGV 的长期视觉场景理解
- DOI:
10.1109/tsmc.2017.2735635 - 发表时间:
2020-04 - 期刊:
- 影响因子:0
- 作者:
Zengshuai Qiu;Yan Zhuang;Huosheng Hu;Wei Wang - 通讯作者:
Wei Wang
3D-laser-based visual odometry for autonomous mobile robot in outdoor environments
用于室外环境中自主移动机器人的基于 3D 激光的视觉里程计
- DOI:
10.1109/icawst.2011.6163127 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yan Zhuang;Shengpeng Yang;Xiaotao Li;Wei Wang - 通讯作者:
Wei Wang
The New Jersey Atmospheric Deposition Network (NJADN)
新泽西州大气沉积网络 (NJADN)
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
M. Aucott;J. Reinfelder;L. Totten;S. Eisenreich;Paul A. Brunciak;C. L. Gigliotti;E. Nelson;D. A. V. Ry;Rosalinda Gioia;J. Offenberg;Yan Zhuang - 通讯作者:
Yan Zhuang
Yet at Factify 2022 : Unimodal and Bimodal RoBERTa-based models for Fact Checking (short paper)
然而在 Factify 2022 上:基于 RoBERTa 的单峰和双峰事实检查模型(短论文)
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yan Zhuang;Yanru Zhang - 通讯作者:
Yanru Zhang
Yan Zhuang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Mps1磷酸化RPA2增强ATR介导的DNA损伤修复促进高级别浆液性卵巢癌PARP抑制剂耐药的机制研究
- 批准号:82303896
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合MPS与GAN的复杂地质结构三维重建方法研究
- 批准号:42372341
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
PS-MPs环境暴露干扰甲状腺—棕色脂肪对话引发糖脂代谢紊乱的作用及机制研究
- 批准号:82370847
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效求解破损船舶运动问题的势流-MPS耦合数值方法研究
- 批准号:52101371
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
HIF-1α介导SOX17抑制纺锤体装配检查点相关基因Mps1调控滋养细胞功能的机制研究
- 批准号:82101760
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2313262 - 财政年份:2023
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
- 批准号:
2211379 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
MPS-Ascend: The C*-Algebraic Mackey Bijection for Real Reductive Groups
MPS-Ascend:实数约简群的 C*-代数 Mackey 双射
- 批准号:
2213097 - 财政年份:2022
- 资助金额:
$ 24.67万 - 项目类别:
Fellowship Award
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
- 批准号:
2136890 - 财政年份:2021
- 资助金额:
$ 24.67万 - 项目类别:
Standard Grant
Development of open-source quantum lattice model simulation software
开源量子晶格模型模拟软件开发
- 批准号:
26730062 - 财政年份:2014
- 资助金额:
$ 24.67万 - 项目类别:
Grant-in-Aid for Young Scientists (B)