Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
基本信息
- 批准号:2314465
- 负责人:
- 金额:$ 41.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Charge transport is a fundamental process in biological systems, it underlies cell activity and metabolism. The research involved in this project aims to expand our understanding about how electrons, the charge carriers, travel long distances in biological materials that are very poor conductors, as opposed to home or industrial electrical wires. It also focuses on a specific kind of enzymatic process where enzymes accelerate the chemical reactions involved in processes where biomolecules are oxidized or reduced, that is lose or gain electrons, a fundamental step in cell functionality. In this project, electron transport in biomolecules is studied through a synergistic theory-experimental effort which relies on advanced peptide synthesis and protein engineering and the measurement of currents at the single-molecule level. This research is relevant for our understanding of biological and cell function. Also, it advances our knowledge regarding fundamental aspects of electron transport in right-handed and left-handed molecules, which are pervasive in biological system. The investigation can also be of importance in the areas of sensing and molecular quantum information. A postdoctoral fellow will be receive cross-training by interactions with international collaborators. This project will create a link between academia and industry by delivering fundamental knowledge for sensor and diagnostic platforms. This project will study the role the electron spin-polarization generated in a chiral peptide matrix has on two remarkably efficient redox-based processes in biology; (1) the long-range electron transport and (2) the redox enzymatic reactions, both mediated by redox cofactors. These two aims will be achieved by first investigating the spin-polarization mechanisms of the electric current flowing through bespoke helical peptides, which constitute the main building blocks of the chiral matrix surrounding redox cofactors. Second, evaluating the impact of the above helix-induced spin-polarization in the electron transport efficiency of a model redox cytochrome. And third, evaluating its impact in the reaction rate of a redox enzymatic processes. The study will be carried out at the single peptide/protein level of resolution using a unique approach that combines advanced single-molecule conductance characterization with peptide synthesis and protein engineering. The single-peptide/protein method to measure molecular conductance is carried out in a precisely controlled nanoscale electrode-electrode gap of an electrochemical scanning tunnelling microscope, which allows operation in physiological conditions. This biophysical approach integrates an atomistic computational modelling of electron conductance of the entire single-molecule device, including both the molecules and the contacts. This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council where NSF funds the US investigator and BBSRC funds the UK partner.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电荷运输是生物系统中的一个基本过程,它是细胞活性和代谢的基础。该项目所涉及的研究旨在扩大我们对电子,电荷载体的理解,而与家用或工业电线相对的生物材料的长距离距离很差。它还侧重于一种特定的酶促过程,其中酶加速了在生物分子被氧化或减少的过程中涉及的化学反应,即损失或获得电子,这是细胞功能的基本步骤。在这个项目中,通过协同理论 - 实验性努力研究了生物分子中的电子传输,该努力依赖于晚期肽合成和蛋白质工程以及单分子水平的电流测量。这项研究与我们对生物和细胞功能的理解有关。此外,它还提高了我们在右手和左撇子分子中电子传输基本方面的知识,这些方面在生物系统中无处不在。 在感应和分子量子信息的领域,研究也可能很重要。博士后研究员将通过与国际合作者的互动进行交叉培训。该项目将通过为传感器和诊断平台提供基本知识来在学术界和行业之间建立联系。该项目将研究手性肽基质在生物学中基于氧化还原的两个非常有效的过程中产生的电子自旋极化的作用。 (1)远程电子传输和(2)由氧化还原辅助因子介导的氧化还原酶促反应。这两个目标将通过首先研究流经定制螺旋肽的电流的自旋极化机制,这构成了氧化还原辅助因子周围手性基质的主要构件。其次,评估上述螺旋诱导的自旋极化对模型氧化还原细胞色素的电子传输效率的影响。第三,评估其对氧化还原酶过程反应速率的影响。该研究将使用独特的方法在单个肽/蛋白质水平下进行,该方法将高级单分子电导表征与肽合成和蛋白质工程结合在一起。测量分子电导的单肽/蛋白质方法是在精确控制的电化学扫描隧道显微镜的精确控制的纳米级电极电极间隙中进行的,该间隙允许在生理条件下运行。这种生物物理方法整合了整个单分子装置的电子电导的原子计算模型,包括分子和触点。美国国家科学基金会和英国生物技术和生物科学研究委员会的支持,NSF为美国调查员和BBSRC资金提供了英国合作伙伴的资金。该奖项反映了NSF的法定任务,并被认为是通过该基金会的知识分子的知识和广泛的影响,该奖项值得一提。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimiro Mujica其他文献
Experimental and theoretical study on the effectiveness of ionic liquids as corrosion inhibitors
- DOI:
10.1016/j.comptc.2022.113640 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Raiza Hernández-Bravo;Alma D. Miranda;José G. Parra;Juan M. Alvarado-Orozco;José M. Domínguez-Esquivel;Vladimiro Mujica - 通讯作者:
Vladimiro Mujica
Electronic and vibrational properties of magnetic core-shell nanoparticles
磁性核壳纳米颗粒的电子和振动特性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
A. D. Bernardo;P. Tarakeshwar;Vladimiro Mujica - 通讯作者:
Vladimiro Mujica
Vladimiro Mujica的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimiro Mujica', 18)}}的其他基金
QLCI-CG: Institute for Chiral-Quantum Materials Interfaces
QLCI-CG:手性量子材料界面研究所
- 批准号:
1936882 - 财政年份:2019
- 资助金额:
$ 41.41万 - 项目类别:
Standard Grant
Transport-Enhanced Thermogalvanic Energy Conversion
传输增强热电能量转换
- 批准号:
1236571 - 财政年份:2012
- 资助金额:
$ 41.41万 - 项目类别:
Standard Grant
International Collaboration in Chemistry: A Theoretical Investigation Of The Role Of The Chemical Bond In The Raman And Fluorescence Response Of Molecule-Nanoparticle Hybrids
国际化学合作:化学键在分子-纳米颗粒杂化物拉曼和荧光响应中作用的理论研究
- 批准号:
1124895 - 财政年份:2011
- 资助金额:
$ 41.41万 - 项目类别:
Standard Grant
相似国自然基金
光诱导自旋转变-导电双功能配合物的构筑及其磁、电性质调控研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光诱导自旋转变-导电双功能配合物的构筑及其磁、电性质调控研究
- 批准号:22203013
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
界面化学反应诱导液滴自发旋转的微观物理机制研究
- 批准号:12202461
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
界面化学反应诱导液滴自发旋转的微观物理机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SPIN1激活IL-10诱导M2巨噬细胞极化促进胃癌浸润转移的机制研究
- 批准号:82103490
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
- 批准号:
EP/X036715/1 - 财政年份:2023
- 资助金额:
$ 41.41万 - 项目类别:
Research Grant
Investigation of underlying physics and applications of chiral-induced spin selectivity phenomena
手性诱导自旋选择性现象的基础物理和应用研究
- 批准号:
22KF0220 - 财政年份:2023
- 资助金额:
$ 41.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Extracellular redox biology links to metabolic and mitochondrial dysfunction in pulmonary hypertension
细胞外氧化还原生物学与肺动脉高压的代谢和线粒体功能障碍有关
- 批准号:
10750457 - 财政年份:2023
- 资助金额:
$ 41.41万 - 项目类别:
Observation of superconducting spin accumulation induced by magnetic field
磁场引起的超导自旋积累的观测
- 批准号:
23K19022 - 财政年份:2023
- 资助金额:
$ 41.41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Novel redox mechanisms of oxygenated phospholipids in chronic and diabetic kidney disease
慢性和糖尿病肾病中含氧磷脂的新氧化还原机制
- 批准号:
10752954 - 财政年份:2023
- 资助金额:
$ 41.41万 - 项目类别: