PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems

PIRE:通过人工智能支持的区域热泵系统实现脱碳

基本信息

  • 批准号:
    2230748
  • 负责人:
  • 金额:
    $ 150万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Increasing concerns about climate change, clean energy, and energy security demand that our society transition to a net-zero carbon economy that serves the triple bottom line of planetary health, societal well-being, and economic prosperity. This PIRE project is focused on innovating Artificial Intelligence (AI) techniques with an understanding of human need and behaviors to enable an efficient, human-centered, resilient, and socially justifiable operation of district- and community-scale heat pumps systems that promote a regional scale adoption of building decarbonization. In an increasingly urbanized world, there is a pressing need to address the critical challenges of climate change through the built environment because the building sector accounts for nearly 40% of the primary energy use in the U.S. and associated greenhouse gas and CO2 emissions, with about 50% of that energy dedicated to heating, cooling, ventilation, and lighting. In addition, people spend more than 90% of their time indoors which means that addressing their needs and comfort in a sustainable way is critical for climate resilience planning. Electrification of heating and cooling systems is widely acknowledged as a core and non-negotiable strategy for decarbonization. Many major U.S. metropolitan areas have put the adoption of electric heat pump technologies on the roadmap reaching building decarbonization in the next decade. Taking advantage of the wide adoption of district heating/cooling heat pump systems in Nordic countries, this project seeks to leverage the data and testbeds provided by our core international partners from Sweden and Denmark and the AI innovations provided by the U.S. team to catalyze the readiness to support the scaling up and adoption of human-centered and equity focused AI empowered district system operation strategies at a regional and global scale. Findings from this project will be disseminated through two International Energy Agency’s Annex teams (81 and 84) which will reach to researchers from more than 20 countries. Through their outreach activities, including focus group discussions and workshops, the team will work closely with partners from government and community stakeholders to promote community-focused and equitable district heat pump adoption, implementation, and operation. Two new cross-institutional education programs are designed to promote convergent international education in human centered sustainable built environment: a) Summer International Graduate Bootcamp and Exchange Program; and b) Smart Built Environment Certification Program. Leveraging partner institutions’ other existing flagship programs ranging from K-12, undergraduate, and workforce training, the project will train a diverse, convergent workforce well-versed in science, technology, engineering, arts, and mathematics (STEAM), AI, and socioeconomics to tackle global challenges of climate change.This project contributes to: 1) data science – the development of new human-interactive AI tools to help facility managers and building owners (i.e., users) to make timely decisions and to help incentivize a faster and wider adoption of building decarbonization; 2) building science – the development of novel and scalable models and algorithms for occupant-centric and socially equitable controls driven by occupant, environmental, and community needs; and 3) social science – engaging communities and decision-makers in the design of AI systems to incorporate their environmental, social, economic, and equity needs in the models. Specific anticipated engineering/science contributions include: 1) novel causally-informed Bayesian network with dynamic causal discovery and thermography-based big data analysis for a scalable performance monitoring, energy diagnosis, and prognosis of district heat pump systems, 2) a comprehensive AI learning based occupant needs and behavior modeling framework to bridge the gaps within human-building-community interactions and promote energy equity across the district, 3) new physics- and data-informed learning models for forecasting and optimization under uncertainty, and 4) holistic data sets collected from pilot sites in Sweden/Denmark and the U.S. that use an energy justice lens and are developed through a community-informed approach. The project team's international industry partners, including a heat pump manufacturer and district energy system management companies, will guide the project to streamline the potential technology transfer process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对气候变化、清洁能源和能源安全的日益关注要求我们的社会向净零碳经济转型,以服务于地球健康、社会福祉和经济繁荣的三重底线。该 PIRE 项目的重点是创新。人工智能(AI)技术了解人类的需求和行为,以实现区域和社区规模热泵系统的高效、以人为本、有弹性和社会合理的运行,从而促进区域范围内建筑脱碳的采用。越来越多的在城市化世界中,迫切需要通过建筑环境应对气候变化的严峻挑战,因为建筑行业占美国一次能源使用量的近 40%,相关的温室气体和二氧化碳排放量约占美国一次能源使用量的 50%。此外,人们 90% 以上的时间都在室内度过,这意味着以可持续的方式满足他们的需求和舒适度对于气候适应力规划至关重要。系统被广泛使用被认为是脱碳的核心且不容谈判的战略。美国许多主要大都市区已将采用电热泵技术纳入未来十年实现建筑脱碳的路线图,充分利用区域供热/制冷热泵的广泛采用。北欧国家的系统,该项目旨在利用我们来自瑞典和丹麦的核心国际合作伙伴提供的数据和测试平台以及美国团队提供的人工智能创新,以促进做好支持扩大和扩展的准备工作。在区域和全球范围内采用以人为本的公平性和重点人工智能赋能的地区系统运营策略,该项目的研究结果将通过国际能源署的两个附件小组(81 和 84)传播,并将传播给来自 20 多个国家的研究人员。通过包括焦点小组讨论和研讨会在内的外展活动,该团队将与政府和社区利益相关者的合作伙伴密切合作,促进以社区为中心和公平的区域热泵采用、实施和运营,设计了两个新的跨机构教育计划。到促进以人为本的可持续建筑环境的融合国际教育:a) 夏季国际研究生训练营和交流计划;b) 利用合作机构的其他现有旗舰项目,包括 K-12、本科生和劳动力培训,该项目将培养一支精通科学、技术、工程、艺术和数学 (STEAM)、人工智能和社会经济学的多元化、融合型劳动力队伍,以应对气候变化的全球挑战。该项目有助于:1) 数据科学 –发展新的人机交互人工智能工具可帮助设施管理者和建筑业主(即用户)做出及时决策,并帮助激励更快、更广泛地采用建筑脱碳;2)建筑科学——开发新颖且可扩展的模型和算法由居住者、环境和社区需求驱动的以居住者为中心和社会公平的控制;3) 社会科学——让社区和决策者参与人工智能系统的设计,将他们的环境、社会、经济和公平需求纳入模型中。 .具体期望工程/科学贡献包括:1) 新颖的因果信息贝叶斯网络,具有动态因果发现和基于热成像的大数据分析,用于区域热泵系统的可扩展性能监控、能源诊断和预测,2) 基于综合人工智能学习的居住者需求和行为建模框架,以弥合人类-建筑-社区互动之间的差距,促进整个地区的能源公平,3)新的基于物理和数据的学习模型,用于在不确定性下进行预测和优化,4)从瑞典/丹麦和美国的试点项目采用能源正义视角,并通过社区知情的方法进行开发。该项目团队的国际行业合作伙伴(包括一家热泵制造商和区域能源系统管理公司)将指导该项目进行精简。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zheng O'Neill其他文献

A framework for calibrating and validating an air loop dynamic model in an HVAC system in Modelica
Modelica 中用于校准和验证 HVAC 系统空气回路动态模型的框架
  • DOI:
    10.26868/25222708.2023.1265
  • 发表时间:
    2023-09-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yicheng Li;Zhelun Chen;Jin Wen;Yangyang Fu;A. Pertzborn;Zheng O'Neill
  • 通讯作者:
    Zheng O'Neill
A flexible and generic functional mock-up unit based threat injection framework for grid-interactive efficient buildings: A case study in Modelica
基于威胁注入框架的灵活通用功能模型单元,用于网格交互高效建筑:Modelica 中的案例研究
  • DOI:
    10.1016/j.enbuild.2021.111263
  • 发表时间:
    2021-11-01
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yangyang Fu;Zheng O'Neill
  • 通讯作者:
    Zheng O'Neill
Dynax: a differentiable dynamic energy simulator for inverse inference, optimal control and end-to-end learning
Dynax:用于逆向推理、最优控制和端到端学习的可微动态能量模拟器
Dynamic bayesian network-based fault diagnosis for ASHRAE guideline 36: high performance sequence of operation for HVAC systems
ASHRAE 指南 36 基于动态贝叶斯网络的故障诊断:HVAC 系统的高性能操作顺序
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pradhan, Ojas;Jin Wen;Yimin Chen;Xing Lu;Mengyuan Chu;Yangyang Fu;Zheng O'Neill;Teresa Wu and K. Selcuk Candan
  • 通讯作者:
    Teresa Wu and K. Selcuk Candan

Zheng O'Neill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zheng O'Neill', 18)}}的其他基金

PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems
PIRE:通过人工智能支持的区域热泵系统实现脱碳
  • 批准号:
    2309030
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
  • 批准号:
    2243931
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
RAPID: Smart Ventilation Control May Reduce Infection Risk for COVID-19 in Public Buildings
RAPID:智能通风控制可降低公共建筑中 COVID-19 的感染风险
  • 批准号:
    2029690
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
PFI-RP: Data-Driven Services for High Performance and Sustainable Buildings
PFI-RP:面向高性能和可持续建筑的数据驱动服务
  • 批准号:
    2050509
  • 财政年份:
    2020
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort
合作研究:自适应多层门窗元件,以实现最佳建筑能源性能和居住者舒适度
  • 批准号:
    2011296
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: An International Network of Networks for Well-being in the Built Environment (IN2WIBE)
合作研究:AccelNet:建筑环境福祉国际网络 (IN2WIBE)
  • 批准号:
    1931261
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: AccelNet: An International Network of Networks for Well-being in the Built Environment (IN2WIBE)
合作研究:AccelNet:建筑环境福祉国际网络 (IN2WIBE)
  • 批准号:
    2009754
  • 财政年份:
    2019
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive, Multi-Layered Fenestration Elements for Optimum Building Energy Performance and Occupant Comfort
合作研究:自适应多层门窗元件,以实现最佳建筑能源性能和居住者舒适度
  • 批准号:
    1760834
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
PFI-RP: Data-Driven Services for High Performance and Sustainable Buildings
PFI-RP:面向高性能和可持续建筑的数据驱动服务
  • 批准号:
    1827757
  • 财政年份:
    2018
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant

相似国自然基金

基于传统桥梁营造智慧的现代木结构模块化集成建筑(T-MiC)设计体系
  • 批准号:
    52378023
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于智能合约的装配式建筑跨域流程协同与优化研究
  • 批准号:
    72301068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光伏直驱空调系统控制与建筑被动储能协同优化机制的研究
  • 批准号:
    52308091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算机视觉的北京老旧居住建筑立面品质测评与生成式更新设计研究
  • 批准号:
    52378022
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
建筑微纳材料复合外窗光热作用机制与效应研究
  • 批准号:
    52378096
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: CAS-Climate -- A modeling framework to understand the environmental and equity impacts of building decarbonization retrofits
职业:CAS-Climate——了解建筑脱碳改造对环境和公平影响的建模框架
  • 批准号:
    2339386
  • 财政年份:
    2024
  • 资助金额:
    $ 150万
  • 项目类别:
    Continuing Grant
ECO-CBET: GOALI: Condensing water from the air for building dehumidification and decarbonization using thermo-responsive desiccants
ECO-CBET:GOALI:使用热敏干燥剂从空气中冷凝水,用于建筑除湿和脱碳
  • 批准号:
    2318720
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems
PIRE:通过人工智能支持的区域热泵系统实现脱碳
  • 批准号:
    2309030
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
SAI: Supporting Equitable Building Decarbonization
SAI:支持公平建筑脱碳
  • 批准号:
    2324505
  • 财政年份:
    2023
  • 资助金额:
    $ 150万
  • 项目类别:
    Standard Grant
A Decarbonization Framework for Existing Building Portfolios
现有建筑组合的脱碳框架
  • 批准号:
    577383-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 150万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了