Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system

合作研究:理解和控制基于中心蛋白的收缩系统产生的力

基本信息

  • 批准号:
    2313727
  • 负责人:
  • 金额:
    $ 37.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Force generation underlies many of the processes most associated with life: movement, growth, and reproduction. The ultrafast contraction of the ciliate Spirostomum ambiguum represents the most powerful biological force generation in nature. This extreme movement is thought to be driven by a contractile protein-based network known as myonemes, which is poorly understood. The project will combine experiments and computational modeling to elucidate the mechanism of myoneme contraction with a view toward revealing new principles of biological force generation. The findings will set the stage to engineer force-generating systems for synthetic cells, for example to control cell shape and movement. The team was established at a 2019 NSF Ideas Lab on building synthetic cells as part of the Rules of Life initiative. The Broader Impact of the work includes its intrinsic nature in revealing the mechanistic details of what may be the most powerful biologic motor known. Additional activities will include the multidisciplinary training of high school, undergraduate, graduate students, and post-doctoral scholars. A permanent exhibit on “Seeing Cells” at the Marine Biological Laboratory (MBL), where 1000+ scientists and members of the public visit each year, will also be expanded upon. A theme of the exhibit is that a given function in a cell can be accomplished through different mechanisms in different types of cells. The project will catalyze new discussions on this theme, the design of synthetic cells, and their possible impact on society, and ideas from these discussions will be incorporated into the exhibit and translated to an online format to reach a wide audience.Myoneme contraction is triggered by calcium, and myonemes are composed of centrin EF-hand proteins and Sfi1 scaffold proteins. In contrast to the well-studied ATP-driven actomyosin contractile system, little is known about how myonemes generate force. Studies at multiple scales will produce quantitative integrative models that explain how molecular conformational changes produce force in the whole organism. A key advance enabling the studies is the team’s reconstitution of calcium-induced contraction by filaments composed of only centrin and Sfi1 in vitro. The project will test the hypothesis that specific conformational changes of myoneme proteins at the molecular level are triggered by calcium to drive the ultrafast contraction at the millimeter scale in this organism. The aims are to 1) determine the factors that modulate assembly and force generation in vitro, 2) elucidate the structural bases of contraction at the molecular level, and 3) determine how the interplay of the myoneme network, calcium dynamics, microtubules, and their surroundings produce ultrafast contraction of the whole organism. In the long term, this work will enable novel understanding of an independent biological mechanism for ultrafast force generation, which can be harnessed to manipulate biological materials, both in vitro and in vivo.This project was co-funded by the Molecular Biophysics and the Systems and Synthetic Biology programs in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迫使产生构成了许多与生活最相关的过程:运动,成长和繁殖。纤毛螺旋体的超快收缩代表了本质上最强大的生物力产生。这种极端运动被认为是由一种基于收缩蛋白的网络驱动的,该网络被称为Myonemes,该网络的理解很少。该项目将结合实验和计算建模,以阐明Myoneme合同的机制,以揭示生物产生的新原理。这些发现将为合成细胞的工程生成系统奠定基础,例如控制细胞形状和运动。该团队是在2019年NSF Ideas实验室建立的,该实验室是为了建立合成细胞的一部分,作为生命规则倡议的一部分。这项工作的更广泛的影响包括其内在性质,以揭示可能是最强大的生物电机的机械细节。其他活动将包括高中,本科,研究生和博士后学者的多学科培训。在海洋生物实验室(MBL)的“看到细胞”的永久性展览中,每年有1000多个科学家和公众访问的成员也将得到扩展。展览的主题是,可以通过不同类型的细胞中的不同机制来实现细胞中的给定功能。该项目将催化有关该主题的新讨论,合成细胞的设计及其对社会的可能影响,这些讨论中的想法将纳入暴露并转化为在线格式中,以吸引广泛的受众群体。钙收缩是由钙触发的,肌酸是由中心蛋白EF HADD蛋白和SFI1蛋白质组成的。与研究良好的ATP驱动的肌球蛋白收缩系统相反,关于肌动物如何产生力,知之甚少。在多个尺度上的研究将产生定量综合模型,以解释分子变化如何在整个组织中产生力。实现研究的关键进步是团队通过仅由中心素和SFI1组成的细丝重建钙诱导的收缩。该项目将检验以下假设:钙在分子水平上的特定会议变化是由钙触发的,以驱动该生物体中毫米尺度上的超快收缩。目的是1)确定在体外调节组装和强力产生的因素,2)阐明分子水平下收缩的结构碱基,以及3)确定肌酸网络,钙动力学,微管及其周围环境如何产生整个生物体的超富集收缩。从长远来看,这项工作将使对超铁产生的独立生物学机制有新的了解,可以利用该机制在体外和体内操纵生物材料。该项目由分子生物物理学并由分子和系统生物学计划共同授予分子和细胞的生物学家。利用基金会的知识分子和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jerry Honts其他文献

Jerry Honts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 37.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 37.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 37.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 37.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 37.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了