Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation

合作研究:多尺度心肌细胞机械适应

基本信息

  • 批准号:
    2230435
  • 负责人:
  • 金额:
    $ 35.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

During every heartbeat, the cells stretch and move as the heart contracts and fills. In disease or following surgery, the way the heart deforms can change, which causes the cells to adapt. Ideally, this adaptation will lead to more efficient heart function, but in some cases, adaptation exacerbates dysfunction, leading to heart failure. The central goal of this project is to mathematically characterize how cardiomyocytes (the primary functional cells in the heart) adapt to changes in their mechanical environment. This research will experimentally measure the cell structure and contractile function of cardiomyocytes exposed to short- and long-term stretching. This will be done using the conditions of both a healthy heart and one whose deformation is perturbed by disease or surgery. Concurrently, we will develop computational models that will provide insight into how perturbed deformations affect the key contractile proteins within the cardiomyocyte. Finally, the experimental and computational results will be combined to create models that can be used to predict cellular adaptation due to any change in deformation. These studies represent a first step toward a computational approach that could be used to guide surgeries or design interventions that optimize cardiac adaptation in heart disease patients. In parallel with these studies, the CardioStart outreach program developed at the University of California-Irvine, will be extended to reach high school students in the vicinity of the University of Minnesota-Twin Cities. Additionally, the program will be expanded with modules that introduce students to cardiac mechano-adaptation.There is a lack of fundamental understanding of how cardiac cells respond to complex mechanical loads. Elucidating the functional adaptation response of cardiac tissues would provide an opportunity to guide surgeries, 3D tissue engineered hearts or patches, and construction of in vitro heart disease models for testing of interventions. Currently, most of the methods are based on qualitative design approaches. For a more quantitative approach, it is necessary to build the fundamental understanding of the mechano-adaptive response of cardiomyocytes, which could be packaged in a model for a predictive design-build framework applicable to a wide variety of challenges. Therefore, our goals are to: 1) Elucidate the acute mechano-adaptive response of cardiomyocytes exposed to complex loads. We hypothesize that the deformation of the cells, caused by the complex loads, changes the dynamics of the actin-myosin motors in the sarcomere leading to changes in efficiency of contraction. 2) Elucidate the long-term mechano-adaptive response of cardiomyocytes exposed to complex loads. We hypothesize that the loss of efficiency in contraction leads to remodeling of the cardiomyocytes to minimize the free energy of the system. Through the combination of experimental measurements and multi-scale models, this project will elucidate both the acute functional and long-term remodeling response of the cardiomyocytes to complex loads.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
每次心跳期间,细胞都会随着心脏收缩和充盈而伸展和移动。在疾病中或手术后,心脏变形的方式会发生变化,从而导致细胞适应。理想情况下,这种适应将导致更有效的心脏功能,但在某些情况下,适应会加剧功能障碍,导致心力衰竭。该项目的中心目标是从数学角度描述心肌细胞(心脏中的主要功能细胞)如何适应其机械环境的变化。这项研究将通过实验测量暴露于短期和长期拉伸的心肌细胞的细胞结构和收缩功能。这将利用健康心脏和因疾病或手术而变形的心脏的条件来完成。同时,我们将开发计算模型,以深入了解扰动变形如何影响心肌细胞内的关键收缩蛋白。最后,实验和计算结果将结合起来创建模型,可用于预测由于变形的任何变化而导致的细胞适应。这些研究代表了计算方法的第一步,可用于指导手术或设计优化心脏病患者心脏适应的干预措施。与这些研究同时进行的,加州大学欧文分校开发的 CardioStart 外展计划将扩展到明尼苏达大学双城分校附近的高中生。此外,该计划还将通过向学生介绍心脏机械适应的模块进行扩展。目前对心脏细胞如何响应复杂的机械负荷缺乏基本了解。阐明心脏组织的功能适应反应将为指导手术、3D 组织工程心脏或补片以及构建用于测试干预措施的体外心脏病模型提供机会。目前,大多数方法都是基于定性设计方法。对于更定量的方法,有必要建立对心肌细胞机械适应性反应的基本理解,可以将其包装在适用于各种挑战的预测设计构建框架的模型中。因此,我们的目标是:1)阐明暴露于复杂负荷的心肌细胞的急性机械适应性反应。我们假设复杂负载引起的细胞变形改变了肌节中肌动蛋白-肌球蛋白马达的动力学,导致收缩效率的变化。 2)阐明暴露于复杂负荷的心肌细胞的长期机械适应性反应。我们假设收缩效率的损失会导致心肌细胞的重塑,从而最大限度地减少系统的自由能。通过实验测量和多尺度模型的结合,该项目将阐明心肌细胞对复杂负荷的急性功能和长期重塑反应。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patrick Alford其他文献

Patrick Alford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patrick Alford', 18)}}的其他基金

Mechanics of Trauma-Induced Tauopathy
创伤引起的 Tau 蛋白病的机制
  • 批准号:
    1935834
  • 财政年份:
    2019
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
Empirically Determined Growth Laws for Vascular Smooth Muscle Cell Mechano-Adaptation
经验确定的血管平滑肌细胞机械适应的生长规律
  • 批准号:
    1563198
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
CAREER: Trauma-Induced Alteration of Vascular Smooth Muscle Mechanics
职业:创伤引起的血管平滑肌力学改变
  • 批准号:
    1553255
  • 财政年份:
    2016
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant

相似国自然基金

SVCI疾病进展中多尺度脑结构-功能耦合演变规律的研究
  • 批准号:
    82302142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤微环境-伤害性感觉神经多尺度串扰调控肿瘤免疫逃逸的机制及应用研究
  • 批准号:
    82372862
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高温-冲击耦合作用下自抗火混凝土衬砌力学性能多尺度研究
  • 批准号:
    52308395
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
东亚寒潮的多尺度子空间特征提取与多尺度动力学研究
  • 批准号:
    42305067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高温和冲击复合作用下PBX炸药损伤与点火反应耦合机理多尺度研究
  • 批准号:
    12372368
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324580
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Metamodeling Machine Learning Framework for Multiscale Behavior of Nano-Architectured Crystalline-Amorphous Composites
协作研究:纳米结构晶体非晶复合材料多尺度行为的元建模机器学习框架
  • 批准号:
    2331482
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
  • 批准号:
    2324579
  • 财政年份:
    2023
  • 资助金额:
    $ 35.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了