Collaborative Research: SaTC: CORE: Small: Detecting and Localizing Non-Functional Vulnerabilities in Machine Learning Libraries
协作研究:SaTC:核心:小型:检测和本地化机器学习库中的非功能性漏洞
基本信息
- 批准号:2230061
- 负责人:
- 金额:$ 24.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to improve security and resilience of machine learning (ML) software. Machine learning has been deployed in many critical domains such as drug discovery, financial planning, autonomous driving, and malware detection. This makes it crucial for ML-based software solutions to function properly even when attacked by malicious actors, leading to a line of research focused on functional vulnerabilities, attacks that attempt to make ML systems produce incorrect results. Less studied, however, are other kinds of vulnerabilities that don’t attack the core prediction functionality but still pose security risks. These “non-functional” vulnerabilities include denial of service attacks, which attempt to render the system unusable through overloading it; and side-channel attacks, which analyze features like response time to infer sensitive information about the models or data they are trained on. This project will develop methods for detecting and correcting these kinds of non-functional vulnerabilities and make those methods widely available, as well as disseminate educational materials to help security researchers and ML software developers be more aware of these risks. Despite a growing number of reported denial-of-service (DoS) and side channel (SC) vulnerabilities in core ML libraries such as NumPy and TensorFlow, a systematic approach to identifying and debugging them has not been explored due to multiple technical challenges: i) non-functional behaviors are not explicitly encoded in the syntax or semantics of ML code; ii) existing fault localization methods often fail to establish causal relationships; and iii) automatic DoS/SC mitigation is largely lacking for ML applications. This project will develop a novel methodology that combines evolutionary algorithms with a gradient-based guidance to detect DoS and quantify the strengths of SC vulnerabilities. For debugging, the project explores causally guided statistical methods to localize the root causes and guide an optimal mitigation policy. The project team will make a concerted effort to increase participation of women, Hispanic, and other underrepresented communities via special topic courses, research experiences for undergraduates, and summer camps for K-12 students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在提高机器学习 (ML) 软件的安全性和弹性。机器学习已部署在药物发现、财务规划、自动驾驶和恶意软件检测等许多关键领域,这对于基于 ML 的软件解决方案至关重要。即使受到恶意攻击者的攻击也能正常运行,从而导致一系列研究集中在功能漏洞上,而试图使机器学习系统产生错误结果的攻击则较少研究,而其他类型的漏洞则不会攻击核心预测。功能,但仍然存在安全风险。 “非功能性”漏洞包括拒绝服务攻击,这种攻击试图通过超载使系统无法使用;以及旁道攻击,这种攻击会分析响应时间等特征,以推断有关其所训练的模型或数据的敏感信息。该项目将开发检测和纠正此类非功能性漏洞的方法,并使这些方法得到广泛应用,并传播教育材料,以帮助安全研究人员和机器学习软件开发人员更加了解这些风险,尽管报告的数量越来越多。 NumPy 和 TensorFlow 等核心 ML 库中存在拒绝服务 (DoS) 和侧通道 (SC) 漏洞,但由于存在多项技术挑战,尚未探索出识别和调试这些漏洞的系统方法:i) 非功能性行为没有明确编码在 ML 代码的语法或语义中;ii) 现有的故障定位方法通常无法建立因果关系;以及 iii) ML 应用程序很大程度上缺乏自动 DoS/SC 缓解。该项目将进化算法与基于梯度的指导相结合来检测 DoS 并量化 SC 漏洞的强度。为了进行调试,该项目探索因果引导的统计方法来定位根本原因并指导最佳的缓解策略。通过专题课程、本科生研究经验和 K-12 学生夏令营,共同努力增加女性、西班牙裔和其他代表性不足社区的参与。该奖项是 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Tan其他文献
The efficacy of the Hiline gas permeable contact lens for the management of Keratoconus
Hiline 透气隐形眼镜治疗圆锥角膜的疗效
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
X. Zhong;Richard Wu;Gang Tan;X. Gong;Xiao Yang;Z. Dai;Ling Wei;Shuxing Li - 通讯作者:
Shuxing Li
Detection and Classification of Different Botnet C&C Channels
不同僵尸网络C的检测与分类
- DOI:
10.1007/978-3-642-23496-5_17 - 发表时间:
2011-09-02 - 期刊:
- 影响因子:0
- 作者:
Gregory Fedynyshyn;M. Chuah;Gang Tan - 通讯作者:
Gang Tan
A Derivative-based Parser Generator for Visibly Pushdown Grammars
用于可见下推语法的基于导数的解析器生成器
- DOI:
10.1145/3591472 - 发表时间:
2023-04-08 - 期刊:
- 影响因子:1.3
- 作者:
Xiaodong Jia;Ashish Kumar;Gang Tan - 通讯作者:
Gang Tan
Hardware Support for Constant-Time Programming
恒定时间编程的硬件支持
- DOI:
10.1145/3613424.3623796 - 发表时间:
2023-10-28 - 期刊:
- 影响因子:0
- 作者:
Yuanqing Miao;M. K;emir;emir;Danfeng Zhang;Yingtian Zhang;Gang Tan;Dinghao Wu - 通讯作者:
Dinghao Wu
Recent advances in using propofol by non-anesthesiologists
非麻醉医师使用异丙酚的最新进展
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Gang Tan;M. Irwin - 通讯作者:
M. Irwin
Gang Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Tan', 18)}}的其他基金
SaTC: CORE: Small: Precise and Robust Binary Reverse Engineering and its Applications
SaTC:核心:小型:精确而鲁棒的二进制逆向工程及其应用
- 批准号:
2243632 - 财政年份:2023
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
CAPA: Collaborative Research: Lightweight Abstract Memory Features
CAPA:协作研究:轻量级抽象内存功能
- 批准号:
1723571 - 财政年份:2017
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
- 批准号:
1624124 - 财政年份:2016
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
- 批准号:
1624125 - 财政年份:2016
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
- 批准号:
1624126 - 财政年份:2016
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
TWC: Medium: Collaborative: Retrofitting Software for Defense-in-Depth
TWC:中:协作:改进纵深防御软件
- 批准号:
1408826 - 财政年份:2014
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
CAREER: User-Space Protection Domains for Compositional Information Security
职业:组合信息安全的用户空间保护域
- 批准号:
1149211 - 财政年份:2012
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
SHF: Small: Collaborative Research: Reusable Tools for Formal Modeling of Machine Code
SHF:小型:协作研究:用于机器代码形式化建模的可重用工具
- 批准号:
1217710 - 财政年份:2012
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
TC: Small: Collaborative Research: Securing Multilingual Software Systems
TC:小型:协作研究:保护多语言软件系统
- 批准号:
0915157 - 财政年份:2009
- 资助金额:
$ 24.66万 - 项目类别:
Standard Grant
III-CXT-Small: Collaborative Research: Structuring, Reasoning, and Querying in a Very Large Medical Image Database
III-CXT-Small:协作研究:在超大型医学图像数据库中构建、推理和查询
- 批准号:
0812073 - 财政年份:2008
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 24.66万 - 项目类别:
Continuing Grant