SHF: Medium: Scallop: A Neurosymbolic Programming Framework for Combining Logic with Deep Learning
SHF:Medium:Scallop:一种将逻辑与深度学习相结合的神经符号编程框架
基本信息
- 批准号:2313010
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Neurosymbolic programming is an emerging paradigm that aims to address fundamental challenges for deep learning by combining it with classical logical reasoning. This project aims to realize the promise of neurosymbolic programming by developing a methodology, algorithms, software implementation, benchmarks, and case studies. To execute the proposed research, the team brings together researchers with expertise spanning machine learning, logical reasoning, formal methods, and programming systems, and will collaborate with a radiology researcher on a real-world application in healthcare. The primary outcome of the project will be an open-source framework for neurosymbolic programming that will be of technical interest to researchers in both machine learning and logical reasoning. In a broader sense, the project contributes to the vision of Trustworthy Artificial Intelligence (AI), and enables its deployment in critical applications such as healthcare. Through education and knowledge transfer activities, the project will build a community of researchers at the intersection of machine learning and logic, to facilitate tight integration of research results with education, and to promote diversity. The project is centered around a neurosymbolic programming framework, called Scallop, that integrates neural architectures with a declarative rule-based logic programming language. Such a design allows convenient specification of challenging tasks such as visual question answering by a suitable decomposition of the desired computation into neural and symbolic components. To address the core challenge of developing end-to-end gradient-descent-based learning algorithms for such neurosymbolic programs, the research is organized along three foundational themes: 1) symbolic reasoning constructs that allow specifying rich domain knowledge yet enable efficient inference and learning; 2) scalable learning for neurosymbolic programs based on ideas rooted in abductive inference and data provenance; and 3) theory and techniques for semantic robustness of neurosymbolic programs. Complementary research tasks include development of the Scallop compiler and toolchain, collection of benchmarks for neurosymbolic learning from a wide range of computational tasks, empirical evaluation, and exploring an application to improve breast cancer risk assessment by integrating neural-network-based image processing of mammograms with rule-based expert knowledge.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Neurosambolic编程是一个新兴的范式,旨在通过将其与经典的逻辑推理相结合来应对深度学习的基本挑战。该项目旨在通过开发一种方法,算法,软件实施,基准和案例研究来实现神经成像编程的承诺。为了执行拟议的研究,团队将研究人员汇集了跨越机器学习,逻辑推理,正式方法和编程系统的专业知识,并将与放射学研究人员合作就医疗保健中的现实应用程序进行合作。该项目的主要结果将是用于神经束编程的开源框架,在机器学习和逻辑推理方面,研究人员都将引起技术兴趣。从广义上讲,该项目有助于值得信赖的人工智能(AI)的愿景,并使其在医疗保健等关键应用程序中的部署。通过教育和知识转移活动,该项目将在机器学习和逻辑的交汇处建立一个研究人员社区,以促进研究结果与教育的紧密整合并促进多样性。 该项目围绕着一个名为Scallop的神经肯定编程框架,该框架将神经体系结构与基于声明性的规则逻辑编程语言集成在一起。这样的设计可以方便地规范具有挑战性的任务,例如通过将所需计算的适当分解为神经和符号组件的可视化问题回答。为了解决为此类神经肯定计划开发基于端到端梯度逐渐梯度的学习算法的核心挑战,该研究是按照三个基础主题进行组织的:1)符号推理构建体,允许指定丰富的领域知识但可以启用有效的推论和学习; 2)基于扎根于绑架推理和数据出处的思想的神经符号计划的可扩展学习; 3)神经符号程序语义鲁棒性的理论和技术。 互补的研究任务包括开发扇贝编译器和工具链,从广泛的计算任务中收集用于神经成像的基准学习,用于从各种计算任务中学习,经验评估,经验评估,以及探索应用于改善乳腺癌风险评估的应用,通过将基于基于乳的乳房的图像处理与基于规则的知识相结合,通过基于规则的知识来反映nsf的基础知识。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mayur Naik其他文献
Yada: Straightforward parallel programming
- DOI:
10.1016/j.parco.2011.02.005 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
David Gay;Joel Galenson;Mayur Naik;Kathy Yelick - 通讯作者:
Kathy Yelick
Relational Query Synthesis ⋈ Decision Tree Learning
关系查询综合⋈决策树学习
- DOI:
10.14778/3626292.3626306 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Aaditya Naik;Aalok Thakkar;Adam Stein;R. Alur;Mayur Naik - 通讯作者:
Mayur Naik
Mayur Naik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mayur Naik', 18)}}的其他基金
Collaborative Research: SHF: Medium: Synthesis of Logic Programs for Democratizing Program Analysis
合作研究:SHF:媒介:民主化程序分析的逻辑程序综合
- 批准号:
2107429 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
FMitF: Collaborative Research: Synergies between Program Synthesis and Neural Learning of Graph Structures
FMITF:协作研究:程序综合与图结构神经学习之间的协同作用
- 批准号:
1836936 - 财政年份:2019
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Adaptive Large-Scale Program Analysis
职业:自适应大型程序分析
- 批准号:
1743116 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
SHF: Small: New Frontiers in Constraint-Based Program Analysis
SHF:小型:基于约束的程序分析的新领域
- 批准号:
1737858 - 财政年份:2017
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SHF: Small: New Frontiers in Constraint-Based Program Analysis
SHF:小型:基于约束的程序分析的新领域
- 批准号:
1526270 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Adaptive Large-Scale Program Analysis
职业:自适应大型程序分析
- 批准号:
1253867 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
- 批准号:
2327438 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
- 批准号:
2344489 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant