Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
基本信息
- 批准号:2312930
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data-driven systems employ algorithms to aid human judgment in critical domains like hiring and employment, school and college admissions, credit and lending, and college ranking. Because of their impacts on individuals, population groups, institutions, and society at large, it is critical to incorporate fairness, accountability, and transparency considerations into the design, validation, and use of these systems. Current research in this area has mainly focused on classification and prediction tasks. However, scoring and ranking are also used widely, and raise many concerns that methods designed for classification cannot handle because classification labels are applied one item at a time, whereas ranking is explicitly designed to compare items. This project is focused on algorithmic score-based rankers that sort a set of candidates based on a “simple” scoring formula. Such rankers are widely used in critical domains because of the premise that they are easier to design, understand, and justify than complex learned models. Yet, even these seemingly simple and transparent rankers may produce counter-intuitive results, unfairly demote candidates that belong to disadvantaged groups, and be prone to manipulation due to sensitivity to slight changes in the input data or in the scoring formula. Addressing these issues is challenging due to the interplay between the data being ranked and the ranker, the complex structure within the data, and the need to balance multiple objectives.This project considers the core technical challenges inherent in the responsible design and validation of algorithmic rankers, and pursues three synergistic aims. Aim 1 is to develop methods to quantify the impact of item attributes, and of specific engineering choices regarding attribute representation and pre-processing, on the ranked outcome (validation). This information is then used to guide the data scientist in selecting a scoring function that corresponds to their understanding of quality or appropriateness (design). Aim 2 is to develop methods to quantify the impact of data uncertainty, of slight changes in the scoring formula, or both, on the ranked outcome (validation). This information is then used to guide the data scientist in intervening on data acquisition and pre-processing to reduce uncertainty, and in selecting a scoring function that is sufficiently stable (design). Aim 3 is to develop methods to quantify lack of fairness in ranked outcomes, with respect to candidates from under-represented or historically disadvantaged groups, in view of multiple fairness objectives and potential intersectional discrimination (validation). This information is then used to identify feasible trade-offs and assist the data scientist in navigating these trade-offs to enact fairness-enhancing interventions (design). Outcomes of this work will impact the practice of scoring and ranking in critical domains like educational program admissions, hiring, and college ranking. Insights from this work will enable technical interventions when appropriate, and also identify cases where they are insufficient, and where more data should be collected or an alternative screening process should be used. This project will also include teaching and mentoring, public education and outreach, and broadening participation of members of under-represented groups in computing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的系统采用算法来帮助人类法官在关键领域,例如招聘和就业,学校和大学录取,信用和贷款以及大学排名。由于它们对个人,人口群体,机构和整个社会的影响,因此至关重要的是将公平性,问责制和透明度的考虑因素纳入这些系统的设计,验证和使用。目前在该领域的研究主要集中在分类和预测任务上。但是,得分和排名也被广泛使用,并提出了许多用于分类方法无法处理的方法,因为一次分类标签一次是一次应用,而排名明确设计用于比较项目。该项目的重点是基于算法得分的排名者,这些排名者基于“简单”评分公式对一组候选人进行排序。这样的排名者被广泛用于关键领域,因为它们比复杂的学习模型更容易设计,理解和合理。然而,即使这些看似简单且透明的排名者也可能产生违反直觉结果,不公平地撤离属于弱势群体,并且由于对输入数据或得分公式中的微微变化的敏感性而容易受到操纵。解决这些问题的挑战是由于被排名的数据与排名者之间的相互作用,数据中的复杂结构以及平衡多个目标的需求。该项目考虑算法排名者的责任设计和验证固有的核心技术挑战,并追求三个协同的目标。 AIM 1是开发方法来量化项目属性的影响以及有关属性表示和预处理的特定工程选择对排名结果(验证)的影响。然后,该信息用于指导数据科学家选择与他们对质量或适当性理解相对应的评分功能(设计)。 AIM 2是开发方法来量化数据不确定性的影响,评分公式或两者兼有对排名结果的影响(验证)的影响。然后,该信息用于指导数据科学家介入数据获取和预处理以减少不确定性,并选择足够稳定的评分函数(设计)。目的3是开发方法来量化排名中缺乏公平性。鉴于多个公平对象和潜在的间际歧视(验证),结果是从代表性不足或历史上不受欢迎的群体中的候选人(验证)。然后,这些信息用于确定可行的权衡,并帮助数据科学家导航这些权衡,以实施公平性增强干预措施(设计)。这项工作的成果将影响在教育计划,招聘和大学排名等关键领域的评分和排名的实践。这项工作的洞察力将在适当的情况下实现技术干预措施,并确定应收集更多数据或应使用替代性筛选过程的情况。该项目还将包括教学和心理,公共教育和推广,以及扩大代表性群体中成员在计算中的参与。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Stoyanovich其他文献
Rankers, Rankees, & Rankings: Peeking into the Pandora's Box from a Socio-Technical Perspective
排名者、排名者、
- DOI:
10.48550/arxiv.2211.02932 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jun Yuan;Julia Stoyanovich;Aritra Dasgupta - 通讯作者:
Aritra Dasgupta
AI reflections in 2020
2020年人工智能反思
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:23.8
- 作者:
Anna Jobin;K. Man;A. Damasio;Georgios Kaissis;R. Braren;Julia Stoyanovich;J. V. Bavel;Tessa V. West;B. Mittelstadt;J. Eshraghian;M. Costa;A. Tzachor;A. Jamjoom;M. Taddeo;E. Sinibaldi;Yipeng Hu;M. Luengo - 通讯作者:
M. Luengo
Responsible AI literacy: A stakeholder-first approach
负责任的人工智能素养:利益相关者优先的方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Daniel Domínguez Figaredo;Julia Stoyanovich - 通讯作者:
Julia Stoyanovich
Enabling Privacy in Provenance-Aware Workflow Systems
在来源感知工作流程系统中启用隐私
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Davidson;S. Khanna;V. Tannen;Sudeepa Roy;Yi Chen;Tova Milo;Julia Stoyanovich - 通讯作者:
Julia Stoyanovich
Rule-based application development using Webdamlog
使用 Webdamlog 进行基于规则的应用程序开发
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Abiteboul;Émilien Antoine;G. Miklau;Julia Stoyanovich;Jules Testard - 通讯作者:
Jules Testard
Julia Stoyanovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Stoyanovich', 18)}}的其他基金
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Framework for Integrative Data Equity Systems
协作研究:综合数据公平系统框架
- 批准号:
1934464 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: III: Small: Collaborative Research: Databases Meet Computational Social Choice
NSF-BSF:III:小型:协作研究:数据库满足计算社会选择
- 批准号:
1916647 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NSF-BSF: III: Small: Collaborative Research: Databases Meet Computational Social Choice
NSF-BSF:III:小型:协作研究:数据库满足计算社会选择
- 批准号:
1813888 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1741047 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: III: Managing Preference Data
CRII:III:管理偏好数据
- 批准号:
1464327 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
BSF: 2014391: Aggregation Methods for Partial Preferences Overview.
BSF:2014391:部分偏好的聚合方法概述。
- 批准号:
1539856 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
- 批准号:82370622
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
- 批准号:42377264
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于III-V族半导体纳米结构阵列的短波红外偏振探测理论与方法研究
- 批准号:62305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高性能TM(I)-Ln(III)单分子磁体的可控合成与构效关系研究
- 批准号:22371031
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant