Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics

合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现

基本信息

  • 批准号:
    2312862
  • 负责人:
  • 金额:
    $ 87.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

In the United States, millions of people have chronic conditions, including Type 2 Diabetes and Congestive Heart Failure. It is important to screen patients for these illnesses as soon as possible. This research aims at mining healthcare data to find patients likely to develop these conditions and to develop a model for opportunistic screening in situations where the encounter with the patient may be unrelated to the specific diagnosis. Opportunistic screening is needed especially for minority and lower socio-economic status patients, who are less likely to seek regular care from primary care providers. This research will address many challenges. First, health records include different types of data, from text to numeric values, from continuous signals to images. Second, records comprise information collected at different timepoints, and with different frequencies: some patients may be seen once a year, and others, every few days. Third, the privacy of patients must be protected. Fourth, automatically derived models must be fair and unbiased, especially towards underprivileged groups. Finally, many powerful current Machine Learning (ML) models behave like black boxes: These models will be adopted in healthcare and other critical areas only if their conclusions can be explained. From a societal point of view, this project has the potential to positively impact the health of millions of people, and in particular, to boost outcomes for minority and lower socio-economic status patients. This research will recruit underrepresented students at the University of Illinois Chicago, a federally-designated Minority-Serving Institution, and support the interdisciplinary development of a diverse cohort of PhD and undergraduate students. This project will explore new ML and Natural Language Processing approaches to uncover the earliest point in temporal sequence data in which a patient can be screened for a chronic condition. The research will develop novel methods to integrate heterogeneous data, which often features missing values and noise; de-identification approaches to protect privacy; new approaches for concept and temporal relation extraction; algorithms to improve fairness by addressing data heterogeneity and missing data; exploration of concept-level explainability. A robust assessment plan is an integral part of the proposed research. First, all algorithms will be evaluated according to current ML methodology. Additionally, a human-in-the-loop approach will be employed, in which the clinicians on the team will provide informal and formal evaluation of the algorithm predictions. The methods this research will uncover are likely applicable to other domains where heterogeneous, incomplete, identifiable, or biased temporal sequence data exist, for example predicting youth at risk, water resource monitoring, and supporting food safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,数以百万计的人患有慢性疾病,包括2型糖尿病和充血性心力衰竭。重要的是要尽快筛查患者治疗这些疾病。这项研究旨在挖掘医疗保健数据,以发现可能发展这些疾病的患者,并在与患者相遇可能与特定诊断无关的情况下开发一种机会筛查模型。需要机会筛查,特别是对于少数民族和较低的社会经济地位患者,他们不太可能从初级保健提供者那里寻求定期护理。这项研究将解决许多挑战。首先,健康记录包括不同类型的数据,从文本到数字值,从连续信号到图像。其次,记录包括在不同的时间点收集的信息,并且有不同的频率:每年可能会看到某些患者一次,而另一些患者每隔几天就会看到一次。第三,必须保护患者的隐私。第四,自动得出的模型必须是公平且公正的,尤其是针对贫困组。最后,许多功能强大的当前机器学习(ML)模型的行为就像黑匣子一样:仅当可以解释其结论时,这些模型才会在医疗保健和其他关键领域中采用。从社会的角度来看,该项目具有积极影响数百万人的健康,尤其是促进少数群体和较低社会经济状况患者的健康状况。这项研究将在伊利诺伊州芝加哥大学招募人数不足的学生,伊利诺伊大学是一家联邦指定的少数派服务机构,并支持各种各样的博士学位和本科生的跨学科发展。该项目将探索新的ML和自然语言处理方法,以揭示时间序列数据中最早的观点,其中可以在其中筛选患者的慢性病。这项研究将开发新的方法来整合异质数据,这些数据通常具有缺失的值和噪声。去识别保护隐私的方法;概念和时间关系提取的新方法;通过解决数据异质性和缺少数据来提高公平性的算法;探索概念级别的解释性。强大的评估计划是拟议研究的组成部分。首先,所有算法将根据当前的ML方法进行评估。此外,将采用一种人类的方法,在该方法中,团队中的临床医生将对算法预测进行非正式和正式评估。 The methods this research will uncover are likely applicable to other domains where heterogeneous, incomplete, identifiable, or biased temporal sequence data exist, for example predicting youth at risk, water resource monitoring, and supporting food safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara DiEugenio其他文献

Barbara DiEugenio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara DiEugenio', 18)}}的其他基金

EAGER: A hybrid dialogue system architecture for symbolic control of deep learning networks
EAGER:用于深度学习网络符号控制的混合对话系统架构
  • 批准号:
    2232307
  • 财政年份:
    2022
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Articulate: Augmenting Data Visualization With Natural Language Interaction
EAGER:协作研究:清晰表达:通过自然语言交互增强数据可视化
  • 批准号:
    1445751
  • 财政年份:
    2014
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
Collaborative Research: A Collaborative Dialogue Architecture for Peer Learning Interactions
协作研究:用于同伴学习互动的协作对话架构
  • 批准号:
    0536968
  • 财政年份:
    2005
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
CAREER: Automatic Knowledge Acquisition for Natural Language Interfaces to Educational Applications
职业:教育应用自然语言接口的自动知识获取
  • 批准号:
    0133123
  • 财政年份:
    2002
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Continuing Grant
U.S.-UK Cooperative Research: Generating Nominal Expressions -- Insights from Human-Human Collaborative Conversations and Their Computational Models
美英合作研究:生成名义表达式——人与人协作对话及其计算模型的见解
  • 批准号:
    9996195
  • 财政年份:
    1999
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
U.S.-UK Cooperative Research: Generating Nominal Expressions -- Insights from Human-Human Collaborative Conversations and Their Computational Models
美英合作研究:生成名义表达式——人与人协作对话及其计算模型的见解
  • 批准号:
    9996175
  • 财政年份:
    1999
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
U.S.-UK Cooperative Research: Generating Nominal Expressions -- Insights from Human-Human Collaborative Conversations and Their Computational Models
美英合作研究:生成名义表达式——人与人协作对话及其计算模型的见解
  • 批准号:
    9800095
  • 财政年份:
    1998
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant

相似国自然基金

III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
乙肝肝纤维化进程咪唑丙酸通过mTORC1通路调控III型固有淋巴细胞糖脂代谢重编程及机制研究
  • 批准号:
    82370622
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
铁载体与Fe(III)相互作用过程的铁同位素分馏及机理的模拟实验研究
  • 批准号:
    42377264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于III-V族半导体纳米结构阵列的短波红外偏振探测理论与方法研究
  • 批准号:
    62305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高性能TM(I)-Ln(III)单分子磁体的可控合成与构效关系研究
  • 批准号:
    22371031
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 87.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了