The effect of inorganic trace elements on dentin apatite

无机微量元素对牙本质磷灰石的影响

基本信息

项目摘要

Non-technical Abstract:Our teeth are made of hard tissues, including enamel and dentin. Dentin is the part under the outer layer of enamel and is responsible for the mechanical strength of teeth. Dentin is mostly composed of a compound called hydroxyapatite, which consists of calcium, phosphate, and hydroxide ions. Under specific conditions, the calcium ions in hydroxyapatite can be substituted by other ions of similar size. These substitutions may impact hydroxyapatite's mechanical and structural properties and, consequently, dentin. While similar studies have been conducted on materials like enamel and bones, this research focuses on dentin, which has yet to receive much attention thus far. The goal of this study is to study how dentinal hydroxyapatite behaves in the presence of different ionic solutions and if they improve its properties. Methods exploring various structural and mechanical properties of hydroxyapatite will be employed in this study. In conjunction with their research efforts, the principal investigator proposes an educational initiative that involves developing a curriculum on dental materials for undergraduate students and organizing workshops and seminars for high school students. This foundational study can have far-reaching broader impacts, as it can eventually lead to new interventions that improve the strength of dentin, especially as hard tissues may be compromised due to diseases such as diabetes, rheumatoid arthritis, cardiovascular disease, and multiple sclerosis.Technical Abstract:This research project aims to investigate the influence of inorganic trace minerals (IoTM) on the structure and mechanical properties of dentinal hydroxyapatite (HAp) while engaging in multiple education and outreach activities for students at various education levels. The proposed project aims to investigate the influence of IoTM, specifically Mn, Cu, and Li, on dentin's structure and mechanical properties, a vital component of teeth. By employing a multidisciplinary approach, combining materials science, biology, and biochemistry, the team seeks to expand the understanding of how trace minerals impact dentin's material properties. The research objectives of this study are to answer the following questions: (1) How does IoTM (as measured in the dentin, either occurring naturally or through extrinsic/intrinsic exposure) affect dentin structure and, in turn, its mechanical properties? (2) What structural properties drive the mechanical changes, and how do these changes vary according to IoTM type (Mn, Cu, or Li) and exposure duration? These objectives will be accomplished via advanced imaging and spectroscopy techniques using X-Ray diffractometry, short/wide angle X-Ray scattering, inductively coupled plasma mass spectrometry, and scanning electron microscope to study the IoTM substitution in HAp, crystal properties, and lattice properties. The mechanical properties, including the plastic parameters and solubility, will also be tested to determine the IoTM exposure using human models. In addition to the scientific research, this project incorporates important educational goals. It seeks to promote interdisciplinary studies in dental material science, foster interest in STEM fields among undergraduate students, and provide opportunities for underrepresented minorities and women in STEM. The outcomes of this research can facilitate the development of improved technologies and biomaterials, leading to enhanced dental treatments for individuals with conditions impacting trace mineral regulation. Simultaneously, it will contribute to scientific knowledge in the field of mineralized tissues and promote STEM education initiatives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:我们的牙齿由硬组织制成,包括搪瓷和牙本质。牙本质是搪瓷外层下方的部分,是牙齿的机械强度。牙本质主要由称为羟基磷灰石的化合物组成,该化合物由钙,磷酸盐和氢氧化物离子组成。在特定条件下,羟基磷灰石中的钙离子可以用其他大小相似的离子代替。这些取代可能会影响羟基磷灰石的机械和结构特性,从而影响牙本质。尽管已经对搪瓷和骨骼等材料进行了类似的研究,但该研究的重点是牙本质,到目前为止尚未受到很多关注。这项研究的目的是研究牙道羟基磷灰石在存在不同离子溶液的情况下的行为以及它们是否改善其特性。在本研究中,将采用探索羟基磷灰石的各种结构和机械性能的方法。结合他们的研究工作,首席研究人员提出了一项教育计划,其中涉及为本科生的牙科材料开发课程,并为高中生组织研讨会和研讨会。这项基础研究可能会产生更深远的影响,因为它最终可能导致新的干预措施,从而改善牙本质的强度,尤其是由于疾病可能会因糖尿病,类风湿关节炎,心血管疾病,心血管疾病和多发性硬化性摘要而造成硬性组织的疾病而受到损害。牙本质羟基磷灰石(HAP)在为各种教育水平的学生进行多种教育和外展活动时。拟议的项目旨在研究IOTM,特别是Mn,Cu和Li对牙本质结构和机械性能的影响,这是牙齿的重要组成部分。通过采用多学科方法,结合材料科学,生物学和生物化学,该团队试图扩展对微量矿物如何影响牙丁材料特性的理解。这项研究的研究目标是回答以下问题:(1)IOTM(如牙本质中,在牙本质中测量,要么自然发生或通过外在/内在暴露发生)会影响牙本质结构,而反过来又会影响其机械性能? (2)哪些结构特性驱动机械变化,这些变化如何根据IOTM类型(MN,CU或LI)和暴露持续时间变化?这些目标将通过高级成像和光谱技术实现,使用X射线衍射法,短/广角X射线散射,电感耦合等离子体质谱法以及扫描电子显微镜来研究HAP中的IOTM替代,晶体特性,晶体特性和lattice属性。还将测试包括塑料参数和溶解性在内的机械性能,以确定使用人类模型的IOTM暴露。除了科学研究外,该项目还结合了重要的教育目标。它旨在促进牙科材料科学的跨学科研究,在本科生中促进对STEM领域的兴趣,并为STEM中代表性不足的少数民族和妇女提供机会。这项研究的结果可以促进改进的技术和生物材料的发展,从而增强对影响痕量矿物质调节的疾病的人的牙科处理。同时,它将有助于矿化组织领域的科学知识并促进STEM教育计划。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估的评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Ali Saghiri其他文献

Scoping Review of the Relationship between Diabetes and Voice Quality.
糖尿病与语音质量之间关系的范围审查。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Mohammad Ali Saghiri;Θ. A. Vakhnovetsky;Θ. Julia Vakhnovetsky
  • 通讯作者:
    Θ. Julia Vakhnovetsky
Effect of Diabetes on Tubular Density and Push-out Bond Strength of Mineral Trioxide Aggregate to Dentin
  • DOI:
    10.1016/j.joen.2020.07.025
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad Ali Saghiri;Kasra Karamifar;Amir Fakharzadeh;Michael Conte;Steven M. Morgano
  • 通讯作者:
    Steven M. Morgano

Mohammad Ali Saghiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

无机熔融盐水合物解聚木质纤维全组分聚合物自组装凝胶化行为及其调控机制研究
  • 批准号:
    22378036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
Fe、Mn介导有机氮-无机氮在土-水跨介质迁移过程中的关键作用与调控机制
  • 批准号:
    52370175
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
有机-无机杂化钙钛矿非谐晶格动力学对激发态载流子传输的影响机制研究
  • 批准号:
    22373033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
宽带隙全无机钙钛矿中应变调控深能级缺陷及相分离研究
  • 批准号:
    62375082
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
旱作农田有机肥无机肥配施下土壤温室气体排放的微生物源汇作用机制
  • 批准号:
    32301966
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FLUORESCENT SENSORS FOR SUBCELLULAR COPPER IMAGING IN LIVE-CELLS
用于活细胞中亚细胞铜成像的荧光传感器
  • 批准号:
    10225338
  • 财政年份:
    2019
  • 资助金额:
    $ 19.99万
  • 项目类别:
Development of a laboratory XANES system for the analysis of metals in tissue for cancer research and chemotherapy drug development
开发实验室 XANES 系统,用于分析组织中的金属,用于癌症研究和化疗药物开发
  • 批准号:
    9559611
  • 财政年份:
    2018
  • 资助金额:
    $ 19.99万
  • 项目类别:
Urinary cadmium and risk of breast cancer
尿镉与乳腺癌风险
  • 批准号:
    8105900
  • 财政年份:
    2011
  • 资助金额:
    $ 19.99万
  • 项目类别:
Urinary cadmium and risk of breast cancer
尿镉与乳腺癌风险
  • 批准号:
    8610307
  • 财政年份:
    2011
  • 资助金额:
    $ 19.99万
  • 项目类别:
Urinary cadmium and risk of breast cancer
尿镉与乳腺癌风险
  • 批准号:
    8415525
  • 财政年份:
    2011
  • 资助金额:
    $ 19.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了