RII Track-4:NSF: Bioactive Surfaces Through Affinity Tag Protein-Polymer Conjugation

RII Track-4:NSF:通过亲和标签蛋白-聚合物缀合形成生物活性表面

基本信息

  • 批准号:
    2229274
  • 负责人:
  • 金额:
    $ 15.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The technology addressed in this project has potential to mitigate everyday common challenges associated with interacting with surfaces. Spilling coffee on a shirt at an inconvenient time or having trepidation about touching a door handle during a global pandemic are examples of challenges that this research aims to mitigate. The surfaces that one interacts with on a daily basis are passive, requiring constant cleaning to be convenient and safe. However, interaction with surfaces would be different if surfaces were self-cleaning, antibacterial, protective, or therapeutic. Proteins provide many functions important to health, agriculture, defense, and food processing. Permanent conjugation of polymers to proteins, creating protein-polymer conjugates, is a widely used strategy to enhance protein stability for these many applications. However, challenges remain with this chemistry, including the potential of reducing protein activity through indiscriminate conjugation, or via the polymer disrupting the protein from folding into its active structure. Further, these covalent strategies contribute to material waste. Once the protein is rendered inactive, the protein, polymer, and any surface these are conjugated to will also be lost due to this permanent covalent chemistry. This project aims to develop strategies for achieving protein-polymer conjugation through a simple yet strong non-permanent interaction to produce regenerative, protein decorated ‘bioactive’ surfaces.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at the University of Southern Mississippi (USM). Proteins provide a myriad of functions important to health, agriculture, transportation, defense, food processing and many others. This demand for proteins has led to an increase in the desire to find strategies to incorporate these biological catalysts into synthetic systems, while providing stability and longevity of protein activity. Despite some successes in developing covalent protein-polymer conjugates to achieve this, challenges with covalent modification remain, leading to reduced or loss of protein activity resulting from protein denaturation. This project will employ scalable histidine tag (His-tag) affinity ligand chemistries, developed and routinely used for recombinant protein purification, coupled with reversible-addition fragmentation chain transfer (RAFT) polymerization as a strategy to create non-covalent protein-polymer conjugates to coat surfaces and impart bioactivity. Utilizing the His-tag for conjugation will ensure polymer attachment at the site of the N- or C-terminus of the protein, avoiding polymer attachment at the protein active site, preventing denaturation, while being amenable to almost all recombinant proteins purified with this chemistry. The non-covalent coupling chemistry will allow for the construction of protein specific bioactive surfaces, with the ease of wash removal and recoupling of active recombinant protein, creating a regenerative surface, suitable for waste reduction. Successful completion of this proof of principle approach will provide a platform technology suitable for high performing bioactive coatings. PI Clemons will be mentored by Heather Maynard, Professor of Chemistry at the University of California Los Angeles (UCLA), Co-Director of the NSF-funded BioPACIFIC MIP, and a world-leader in protein-polymer conjugation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目所解决的技术有可能缓解与在不方便的时间与表面互动相关的日常常见挑战,或者在全球大流行期间对触摸门把手感到恐惧,这些都是本研究旨在缓解的挑战的例子。人们每天接触的表面是被动的,需要不断清洁才能方便和安全。但是,如果表面具有自清洁、抗菌、保护或治疗作用,那么与表面的相互作用就会有所不同。到聚合物与蛋白质的永久缀合,形成蛋白质-聚合物缀合物,是在许多应用中增强蛋白质稳定性的广泛使用的策略,但这种化学方法仍然存在挑战,包括降低蛋白质稳定性的潜力。通过不加区别的缀合,或通过聚合物破坏蛋白质折叠成其活性结构,这些共价策略会导致材料浪费,一旦蛋白质失去活性,蛋白质、聚合物和任何表面都会被缀合。由于这种永久的共价化学,该项目旨在开发通过简单但强大的非永久相互作用实现蛋白质-聚合物缀合的策略,以产生再生的、蛋白质装饰的“生物活性”表面。该研究基础设施改进轨道- 4 EPSCoR 研究人员 (RII Track-4) 项目将为南密西西比大学 (USM) 的一名助理教授提供奖学金并为一名研究生提供培训。蛋白质提供了对健康、农业、运输、国防至关重要的多种功能。 , 食物尽管在开发共价蛋白质-聚合物缀合物方面取得了一些成功,但对蛋白质的需求增加了寻找将这些生物催化剂纳入合成系统的策略,同时提供蛋白质活性的稳定性和寿命。然而,共价修饰的挑战仍然存在,导致蛋白质变性导致蛋白质活性降低或丧失。该项目将采用可扩展的组氨酸标签(His-tag)亲和配体化学,该化学方法已开发并常规用于重组蛋白。纯化,结合可逆加成断裂链转移 (RAFT) 聚合作为创建非共价蛋白质-聚合物缀合物以包被表面并赋予生物活性的策略,利用 His 标签进行缀合将确保聚合物附着在 N 位点。 - 或蛋白质的 C 末端,避免聚合物附着在蛋白质活性位点,防止变性,同时适用于几乎所有用这种化学方法纯化的重组蛋白质。将允许构建蛋白质特异性生物活性表面,易于洗涤去除和活性重组蛋白的重新偶联,创建适合减少废物的再生表面,成功完成这一原理证明方法将提供适合高水平的平台技术。 PI Clemons 将得到加州大学洛杉矶分校 (UCLA) 化学教授、NSF 资助的 BioPACIFIC MIP 联合主任 Heather Maynard 的指导。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tristan Clemons其他文献

Machine learning makes magnificent macromolecules for medicine.
机器学习为医学创造了出色的大分子。
  • DOI:
    10.1016/j.matt.2022.07.008
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Veronica Cunitz;Evan K Stacy;Penelope Jankoski;Tristan Clemons
  • 通讯作者:
    Tristan Clemons

Tristan Clemons的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tristan Clemons', 18)}}的其他基金

Equipment: MRI: Track 1 Acquisition of a Transmission Electron Microscope with Cryogenic Imaging Capabilities for Research and Education
设备: MRI:轨道 1 采购具有低温成像功能的透射电子显微镜用于研究和教育
  • 批准号:
    2320081
  • 财政年份:
    2023
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant

相似国自然基金

基础学科拔尖学生发展及其影响机制的追踪研究
  • 批准号:
    72304231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
  • 批准号:
    62307006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多精度目标追踪的多模态统一模型
  • 批准号:
    62302328
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
  • 批准号:
    32371103
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
  • 批准号:
    12301393
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
  • 批准号:
    2327266
  • 财政年份:
    2024
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
  • 批准号:
    2327384
  • 财政年份:
    2024
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
  • 批准号:
    2327409
  • 财政年份:
    2024
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
  • 批准号:
    2327474
  • 财政年份:
    2024
  • 资助金额:
    $ 15.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了