Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
基本信息
- 批准号:2312502
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many real-world domains, spanning physical systems, social systems, brain networks, and epidemic networks, can be conceptualized as multi-agent dynamic systems, wherein different agents interact with each other and progress according to specific dynamics. Understanding and modeling these systems can enhance our comprehension of their underlying mechanisms, allowing us to make more accurate long-term predictions and better-informed decisions, with or without interventions. Despite extensive study of multi-agent dynamical systems in specific domains, there is currently no general solution available, and even the most knowledgeable experts may struggle to describe them mathematically. The proposed VIRTUALLAB framework aims to create a virtual lab capable of learning system dynamics from observed data, predicting future agent trajectories, and accurately forecasting potential system outcomes under a range of interventions. This project will facilitate the rapid adoption of AI techniques in different domains, promoting the digital revolution and the use of AI for healthcare, science, and public policy. The investigators plan to incorporate educational activities into the research, offering students exciting opportunities to apply AI and ML in various domains such as biomedical research, material science, and public health. They will also widely disseminate their findings through publications, tutorials at various conferences, and collaborations with domain experts. The project has identified several limitations in existing approaches to modeling and predicting multi-agent dynamical systems. Firstly, approaches are often domain specific, and there is a lack of general methodology to address the full range of dynamical systems. Secondly, most dynamical systems are defined by complex ordinary or partial differential equations that can be difficult or even impossible to devise. Thirdly, making predictions can be very time-consuming and may not be applicable to large-scale systems. Lastly, very little work has addressed the problem of causal inference in multi-agent systems. The VIRTUALLAB framework is designed to be transformative and address these challenges. Firstly, it will provide general solutions to model multi-agent dynamical systems across a broad spectrum of applications, where the dynamics can be learned from incomplete and irregular observational data from the same or related systems. This will involve addressing several challenges, such as modeling continuous dynamics from incomplete signals, designing models that capture high-order nonlinear dynamics, generalizing learned dynamics to new systems with few observations, and scaling models to handle large-scale systems and make training and inference efficient for real-world systems. Secondly, VIRTUALLAB will provide accurate predictions of potential outcomes after an intervention, either at the node or system level, by leveraging offline data. Doing so will involve handling both system- and node-level intervention and continuous-time dynamic intervention, rather than static intervention that may occur in the future. Lastly, the project will test and evaluate the proposed framework using several use cases, including functional brain networks, molecular dynamics, and epidemic dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现实世界的领域,跨越物理系统、社会系统、大脑网络和流行病网络,可以被概念化为多智能体动态系统,其中不同的智能体相互交互并根据特定的动态进行进展。理解和建模这些系统可以增强我们对其潜在机制的理解,使我们能够做出更准确的长期预测和更明智的决策,无论是否进行干预。尽管对特定领域的多智能体动力系统进行了广泛的研究,但目前还没有可用的通用解决方案,即使是最有知识的专家也可能很难从数学上描述它们。拟议的 VIRTUALLAB 框架旨在创建一个虚拟实验室,能够从观察到的数据中学习系统动力学,预测未来的智能体轨迹,并准确预测一系列干预措施下的潜在系统结果。该项目将促进人工智能技术在不同领域的快速采用,推动数字革命以及人工智能在医疗保健、科学和公共政策领域的应用。研究人员计划将教育活动纳入研究中,为学生提供令人兴奋的机会,将人工智能和机器学习应用于生物医学研究、材料科学和公共卫生等各个领域。他们还将通过出版物、各种会议上的教程以及与领域专家的合作来广泛传播他们的发现。该项目发现了现有的多智能体动力系统建模和预测方法的一些局限性。首先,方法通常是特定领域的,并且缺乏解决全方位动力系统的通用方法。其次,大多数动力系统都是由复杂的常微分方程或偏微分方程定义的,这些方程很难甚至不可能设计。第三,进行预测可能非常耗时,并且可能不适用于大规模系统。最后,很少有工作解决多智能体系统中的因果推理问题。 VIRTUALLAB 框架旨在实现变革并应对这些挑战。首先,它将提供跨广泛应用的多智能体动力学系统建模的通用解决方案,其中可以从相同或相关系统的不完整和不规则的观测数据中学习动力学。这将涉及解决几个挑战,例如根据不完整信号对连续动力学进行建模,设计捕获高阶非线性动力学的模型,将学习到的动力学推广到几乎没有观察的新系统,以及缩放模型以处理大规模系统并进行训练和推理对于现实世界的系统来说是高效的。其次,VIRTUALLAB 将利用离线数据在节点或系统级别提供干预后潜在结果的准确预测。这样做将涉及处理系统级和节点级的干预以及连续时间的动态干预,而不是将来可能发生的静态干预。最后,该项目将使用多个用例测试和评估所提出的框架,包括功能性脑网络、分子动力学和流行病动力学。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的评估进行评估,被认为值得支持。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carl Yang其他文献
Multimodal Fusion of EHR in Structures and Semantics: Integrating Clinical Records and Notes with Hypergraph and LLM
EHR 在结构和语义方面的多模态融合:将临床记录和注释与 Hypergraph 和 LLM 相集成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hejie Cui;Xinyu Fang;Ran Xu;Xuan Kan;Joyce C. Ho;Carl Yang - 通讯作者:
Carl Yang
BoxCare: A Box Embedding Model for Disease Representation and Diagnosis Prediction in Healthcare Data
BoxCare:用于医疗数据中疾病表示和诊断预测的框嵌入模型
- DOI:
10.1145/3589335.3651448 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hang Lv;Zehai Chen;Yacong Yang;Guofang Ma;Yanchao Tan;Carl Yang - 通讯作者:
Carl Yang
GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning
GuardAgent:由 Guard Agent 通过知识推理来保护 LLM 代理
- DOI:
10.48550/arxiv.2406.09187 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhen Xiang;Linzhi Zheng;Yanjie Li;Junyuan Hong;Qinbin Li;Han Xie;Jiawei Zhang;Zidi Xiong;Chulin Xie;Carl Yang;Dawn Song;Bo Li - 通讯作者:
Bo Li
Contrastive Unlearning: A Contrastive Approach to Machine Unlearning
对比遗忘:机器遗忘的对比方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hong kyu Lee;Qiuchen Zhang;Carl Yang;Jian Lou;Li Xiong - 通讯作者:
Li Xiong
ExpertODE: Continuous Diagnosis Prediction with Expert Enhanced Neural Ordinary Differential Equations
ExpertODE:使用 Expert 增强型神经常微分方程进行连续诊断预测
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Hengyu Zhang;Yanchao Tan;Guofang Ma;Carl Yang - 通讯作者:
Carl Yang
Carl Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carl Yang', 18)}}的其他基金
Collaborative Research: NCS-FO: Dynamic Brain Graph Mining
合作研究:NCS-FO:动态脑图挖掘
- 批准号:
2319449 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
摇摆桥梁三维动力学行为及地震响应规律研究
- 批准号:52308494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于瞬态成像响应的非同步相移轮廓术三维测量方法研究
- 批准号:62375078
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
构件复杂背景下的实景三维古建筑物细节多层次语义提取方法研究
- 批准号:62306107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用物理模型研究三维细胞迁移与复杂胞外基质的关系
- 批准号:12374213
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于“三明治”构型的延迟荧光材料的设计、合成及其应用研究
- 批准号:52303244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342498 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
- 批准号:
2342497 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant