Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
基本信息
- 批准号:2312001
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Membranes offer improved energy and operational efficiency compared to traditional chemical separation processes such as distillation and absorption. However, membrane technology is less mature than distillation and absorption technologies. Developing new membrane materials to make membrane-based separations competitive with these traditional technologies remains a significant need. Chemical separations are of vital importance as they underpin the production of energy and materials that allow the modern world to function. Improvements to separation processes are key to reducing energy consumption, costs of products and services, and greenhouse gas (GHG) emissions. This project will utilize synthetic chemistry, polymer science, and state-of-the-art transport measurement and spectroscopic techniques to develop new fundamental knowledge of membrane structures and performance, which can lead to breakthroughs in membrane performance. The lessons learned through the membrane design process and the development of structure-transport relationships for these membranes can also be translated to other applications, such as utilizing plastic wastes to obtain key starting materials in the generation of new high-performance polymer materials with unique properties that can be 3D printed. This project creates opportunities for training undergraduate and graduate students in a variety of synthetic and characterization techniques and leverages existing programs established by the investigators to facilitate undergraduate student participation.Gas diffusion plays a key role in the separation performance of polymer membranes. Yet, quantification and fundamental understanding of gas diffusion on microscopic, viz. sub-micrometer and micrometer, length scales comparable with sizes of structural inhomogeneities (domains) have not been demonstrated for ionenes. This project will address this knowledge gap, allowing for rational polymer membrane design based on a detailed understanding of microscopic diffusion and its relationship with the macroscopic transport through an entire membrane as well as membrane structural properties. The key objective of the synergistic experimental research plan is to develop a fundamental understanding of gas transport in a new type of polymer named “doubly segmented ionenes” (DS ionenes). The study of DS ionenes will create a new paradigm for the design of polymers for gas separation membranes and generate a significant body of knowledge that will also be of broad interest to the separation science and polymer science communities. The systematic variation of DS ionene structures will provide deep knowledge of how the composition, length, and volume fraction of major membrane constituents influence gas permeability and diffusion on all relevant length scales. The overall goal is to develop an understanding of the structure-transport relationship that allows for tailoring membrane composition to maximize performance for any target gas separation application. Carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) gases will be examined in microscopic diffusion NMR experiments. Additional gases related to energy production and consumption, including nitrogen, oxygen, and hydrogen, will be considered in the macroscopic membrane experiments. The success of this project will translate into major intellectual advancements in the ability to build high-permeability and high-selectivity polymer membranes for gas separations, which will be required to meet the energy challenges of the 21st Century.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与蒸馏和吸收等传统化学分离工艺相比,膜可提供更高的能源和运行效率,但是,开发新的膜材料以使膜分离技术与这些传统技术相比仍具有重要意义。化学分离至关重要,因为它们是现代世界运转的能源和材料生产的基础,分离工艺的改进是减少能源消耗、产品和服务成本以及温室气体 (GHG) 排放的关键。该项目将利用合成化学、聚合物科学以及最先进的传输测量和光谱技术,以开发膜结构和性能的新基础知识,这可以导致膜性能的突破。这些膜的结构-传输关系也可以转化为其他应用,例如利用塑料废物来获取关键原材料,以生成具有独特性能的可 3D 打印的新型高性能聚合物材料。本科生和研究生在各种合成和表征技术并利用研究人员建立的现有计划来促进本科生的参与。然而,气体扩散在微观(即亚微米和微米)的分离性能中起着关键作用。尚未证明紫罗烯的长度尺度与结构不均匀性(域)的大小相当,该项目将解决这一知识差距,允许基于对微观扩散及其与宏观关系的详细理解进行合理的聚合物膜设计。该协同实验研究计划的主要目标是对一种名为“双链段紫罗烯”(DS DS 紫罗烯)的新型聚合物中的气体传输有一个基本的了解。为气体分离膜聚合物的设计创造了一个新的范式,并产生了重要的知识体系,这些知识体系也将引起分离科学和聚合物科学界的广泛兴趣。提供有关主要膜成分的成分、长度和体积分数如何影响所有相关长度尺度上的气体渗透性和扩散的深入知识总体目标是加深对结构-传输关系的理解,以便调整膜成分以最大化。二氧化碳 (CO2)、甲烷 (CH4) 和一氧化碳 (CO) 气体的性能将在显微扩散核磁共振实验中进行检查。其他气体与能源生产和消耗相关,包括氮气、氧气和二氧化碳。氢,该项目的成功将转化为构建用于气体分离的高渗透性和高选择性聚合物膜的能力的重大智力进步,这是应对 21 世纪能源挑战所必需的。世纪。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Vasenkov其他文献
Ein bisher einmaliger Einblick in die Diffusion durch die Beobachtung der Konzentration von Gastmolekülen in nanoporösen Wirtmaterialien
纳米多孔材料中气体分子控制的扩散
- DOI:
10.1002/ange.200602892 - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
J. Kärger;Pavel Kortunov;Sergey Vasenkov;L. Heinke;Dhananjai B. Shah;Rainer A. Rakoczy;Yvonne Traa;J. Weitkamp - 通讯作者:
J. Weitkamp
Sergey Vasenkov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Vasenkov', 18)}}的其他基金
Collaborative Research: Quantifying the Role of Interfaces in Liquid Separation Membranes based on Carbon Molecular Sieves
合作研究:量化基于碳分子筛的液体分离膜中界面的作用
- 批准号:
2135662 - 财政年份:2022
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Crossing the percolation threshold for selective gas transport using interconnected crystals of metal–organic frameworks in polymer-based hybrid membranes
合作研究:利用聚合物杂化膜中金属有机框架的互连晶体跨越选择性气体传输的渗滤阈值
- 批准号:
2034734 - 财政年份:2021
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Enabling rational design of MOF-polymer mixed matrix membranes for liquid separations through understanding of microscale and macroscale properties
合作研究:通过了解微观和宏观特性,实现用于液体分离的 MOF-聚合物混合基质膜的合理设计
- 批准号:
1836735 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Sulfonated Polymer Membrane Morphology in Microscale Transport of Organic Molecules
合作研究:磺化聚合物膜形态在有机分子微尺度传输中的作用
- 批准号:
1836551 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable Production of Metal-Organic Molecular Sieves with Optimized Gas Transport Properties
合作研究:具有优化气体传输性能的金属有机分子筛的规模化生产
- 批准号:
1561347 - 财政年份:2016
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
UNS:Collaborative research: Resolving changes in microscopic properties as a result of hybrid polymer-ZIF membrane formation to enable rational design of such membranes
UNS:合作研究:解决混合聚合物-ZIF膜形成导致的微观特性的变化,以实现此类膜的合理设计
- 批准号:
1510411 - 财政年份:2015
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CAREER: Fundamentals of the Relationship between Pore Structure and Transport of Light Gases in Materials with a Hierarchy of Pore Sizes
职业:具有孔径等级的材料中孔结构与轻气体传输之间关系的基础
- 批准号:
0951812 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Molecular modeling and experimental investigation of the structure and dynamics of confined ionic liquids and their performance in gas separations
合作研究:限域离子液体的结构和动力学及其在气体分离中的性能的分子建模和实验研究
- 批准号:
0967703 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
相似国自然基金
青海省城乡居民兼具环境与健康协同效益的合理膳食模式研究
- 批准号:42307603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MOFs的合理封装对载流子迁移的调控及其高效光催化全分解水研究
- 批准号:52302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有机铅卤素钙钛矿光阴极的合理构筑及光电催化制氨的研究
- 批准号:22302026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负虚系统控制综合理论与负虚控制器的应用研究
- 批准号:62373272
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向天基骨干网络的多制式激光链路数据融合理论及实验研究
- 批准号:62301476
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Rational design of redox-responsive materials for critical element separations
合作研究:DMREF:用于关键元素分离的氧化还原响应材料的合理设计
- 批准号:
2323989 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243665 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Ideas Lab: Rational Design of Noncoding RNA for Epigenetic Signal Amplification
合作研究:创意实验室:用于表观遗传信号放大的非编码 RNA 的合理设计
- 批准号:
2243667 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Rationally Designed, Target-specific Imaging Probes for Nephro-urology Diagnoses
用于肾泌尿科诊断的合理设计、针对特定目标的成像探头
- 批准号:
10659440 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别: