EAGER: Chemically-Inspired, Tunable Quantum Computing Architectures for Dynamics of Molecular Systems

EAGER:受化学启发的可调谐量子计算架构,用于分子系统动力学

基本信息

  • 批准号:
    2311165
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry, Philip Richerme and Srinivasan Iyengar of Indiana University, are developing quantum devices inspired by and for the study of quantum chemical dynamics. The chemical processes studied by Richerme and Iyengar play central roles in the reactive chemistry of most biological, materials, and atmospheric systems. For instance, quantum chemical dynamics likely underlie catalytic transformations of global importance, including the reduction of CO2, which is critical to converting this greenhouse gas to useful feedstocks, artificial photosynthesis, and nitrogen fixation. Classical approaches toward modeling these processes have been unsuccessful, since they would require exponentially large computing resources to accurately describe the large numbers of quantum-mechanical electrons and nuclei within the system. Instead, Richerme and Iyengar will use fundamentally quantum hardware, whose design mirrors the geometry of the molecules under study, to emulate the dynamics of these chemical systems. This may allow them to directly calculate wavepacket dynamics and vibrational spectra for these systems without the significant overhead of gate-model quantum computation. In addition, this project will provide a rich training environment for experimental and theory graduate students – both at the MS and PhD levels – and will enable the development of a Quantum Chemistry track within the Indiana University Quantum Master’s degree program, addressing the nationally-recognized need for workforce development in the area of Quantum Information Science.Richerme and Iyengar will develop a new approach to mapping the microscopic quantum interactions of chemical systems to engineered quantum hardware. Their central insight is that the relative geometry of quantum objects drives their connectivity, and hence, behavior and offers significant simplifications when designing quantum hardware to emulate natural processes. Drawing inspiration from the geometry of the molecules themselves, they arrange the geometry of trapped-ion qubit arrays to natively replicate the interactions and timescales of entanglement propagation between the various nuclear degrees of freedom. This approach is motivated by the observation that closely-spaced trapped-ion qubits interact strongly, while interactions decay quickly as the ion-ion distance is increased. This difference in coupling strengths, emerging from the relative ion positions, provides a framework in which multiple nuclear dimensions are simulated in parallel within multiple closely-spaced groups of ions; weak couplings across these ion clusters then generates correlations among the effective nuclear degrees of freedom. The spacing between ion clusters is controllable to sub-micron precision by changing the confinement voltages applied to ion-trap electrodes, similar to prior work which controls the trap voltages to achieve equally-spaced ion strings. Once these native interactions are encoded through the system geometry, analog quantum simulation methods should enable propagation of the molecular dynamics and extraction of the vibrational frequencies in the system, without requiring exponential numbers of quantum gates. Success in this approach has the potential to be transformational in the fields of quantum dynamics and vibrational spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学理论的支持下,印第安纳大学的菲利普·里奇梅尔(Philip Richerme)和斯里尼瓦桑·伊扬格(Srinivasan Iyengar)的模型和计算方法计划正在开发受量子化学动力学启发和研究的量子设备。 Richerme和Iyengar研究的化学过程在大多数生物学,材料和大气系统的反应性化学中起着核心作用。例如,量子化学动力学可能是全球重要性的催化转化的基础,包括二氧化碳的减少,这对于将这种温室气体转化为有用的原料,人工光合作用和氮固定至关重要。对这些过程进行建模的经典方法没有成功,因为它们需要指数级的计算资源来准确地描述系统内大量的量子力学电子和核。取而代之的是,Richerme和Iyengar将使用根本上量子硬件,其设计反映了所研究的分子的几何形状,以模仿这些化学系统的动力学。这可能使他们能够直接计算这些系统的波袋动力学和振动光谱,而没有栅极模型量子计算的显着开销。此外,该项目将为MS和PHD水平的实验和理论研究生提供丰富的培训环境,并能够在印第安纳大学量子硕士学位课程中开发量子化学轨道,以应对全国认可的劳动力发展领域的劳动力发展需求。量子信息科学和IYENGAR的量子相互作用量化量子量的量子量很大,以绘制量子的量子化量度差异化,以绘制量子的量化量级。他们的主要见解是,量子对象的相对几何形状驱动其连接性,因此,行为并在设计量子硬件以模拟自然过程时提供了重要的简化。从分子本身的几何形状中汲取灵感,它们安排了被困的离子量子阵列的几何形状,以本质地复制各种自由核度之间的纠缠式传播的相互作用和时间尺度。这种方法是由于观察到紧密间隔的离子速度相互作用而激发的,而随着离子离子距离的增加,相互作用迅速衰减。从相对离子位置出现的耦合强度的这种差异提供了一个框架,在该框架中,在多个离子的多个离子组中并行模拟了多个核维度;然后,这些离子簇之间的弱耦合会在有效的核自由度之间产生相关性。离子簇之间的间距可以通过更改用于离子陷阱电极的限制电压来控制亚微米的精度,类似于先前的工作,该工作控制陷阱电压以实现相同的离子字符串。一旦这些天然的相互作用通过系统几何形状进行编码,模拟量子模拟方法应能够传播系统中振动频率的分子动力学和提取,而无需指数量的量子门。这种方法的成功有可能在量子动力学和振动光谱领域进行变革。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估诚实地认为通过评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interaction graph engineering in trapped-ion quantum simulators with global drives
具有全局驱动器的俘获离子量子模拟器中的交互图工程
  • DOI:
    10.1088/1367-2630/ad264d
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Kyprianidis, Antonis;Rasmusson, A. J.;Richerme, Philip
  • 通讯作者:
    Richerme, Philip
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Richerme其他文献

Quantum omputation of Hydrogen Bond Dynamics and Vibrational Spectra
氢键动力学和振动光谱的量子计算
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Philip Ri;M. Revelle;Christopher Yale;D. Lobser;Ashlyn D. Bur;Susan M. Clark;Debadrita Saha;M. A. Lopez;Anurag Dwivedi;Jeremy M. Smith;Sam A. Norrell;Amr Sabry;S. Iyengar;Sriniva an;Philip Richerme
  • 通讯作者:
    Philip Richerme
Measurement-Induced Heating of Trapped Ions
捕获离子的测量诱导加热
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Rasmusson;Ilyoung Jung;Frank Schroer;Antonis Kyprianidis;Philip Richerme
  • 通讯作者:
    Philip Richerme

Philip Richerme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

在线碎片化学习对“数字游民”型员工数字能力与创新绩效的影响机制研究
  • 批准号:
    72301088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
富锂层状氧化物表面LiMn6超结构单元浓度调控及电化学性能
  • 批准号:
    22378342
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
MOF基异质分级微纳结构的集成组装、界面调控与电化学传感性能
  • 批准号:
    22371165
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学键对硫代硼酸盐结构及非线性光学性能的调控研究
  • 批准号:
    22305264
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
原位拉曼光谱解析单原子催化剂的电化学析氧机制
  • 批准号:
    22302184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bio-Inspired Molecular Signal-Amplification Sensing
仿生分子信号放大传感
  • 批准号:
    22KJ1283
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Establish a Strategy to Utilize "Membrane Platform" for Expanding the World of Bio-Inspired Chemical Engineering
制定利用“膜平台”拓展仿生化学工程领域的战略
  • 批准号:
    21H04628
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Exploring relativistic quantum chemistry with 'quantum inspired' algorithms
用“量子启发”算法探索相对论量子化学
  • 批准号:
    21K18933
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study on nacre inspired platelet reinforced tough polymer composite
珍珠母启发的片状增强韧性聚合物复合材料的研究
  • 批准号:
    20K05112
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of brain-inspired material intelligence composed of nanomaterial network
创造由纳米材料网络组成的类脑物质智能
  • 批准号:
    20K22485
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了