Collaborative Research: RESEARCH-PGR: Predicting Phenotype from Molecular Profiles with Deep Learning: Topological Data Analysis to Address a Grand Challenge in the Plant Sciences
合作研究:RESEARCH-PGR:利用深度学习从分子概况预测表型:拓扑数据分析应对植物科学的重大挑战
基本信息
- 批准号:2310357
- 负责人:
- 金额:$ 33.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Organisms are a consequence of information embedded in their genome expressed through molecular processes. Sequencing technologies allow biologists to extract nearly all information content from the genome. However, measuring what an organism is has not advanced as far as genomic sequencing: unlike the genome, it is not yet possible to measure the totality of information embedded in the organismal form. If all the information that is contained within organisms could be extracted, a model could be developed that would address one of the Grand Challenges in biology, the ability to predict what an organism is from its genomic information. In this project, mathematical approaches that have not been fully explored in biology will be used to extract information in data by measuring its structure. This field of mathematics has a motto: that all shape is data, and all data have shape. By measuring the shapes and gene expression patterns of leaves, the project will treat them as data from which embedded information can be extracted. Deep learning methods will then be used to predict the shapes of leaves from their gene expression profiles. As part of the connection between the project and its impact to society, students from both the U.S. and México will help analyze the data through Plants&Python, a bilingual, freely available curriculum initiated as a means to bring together plant biologists who have never coded and data scientists new to plant science, with groups that comprise U.S. agriculture. Using X-ray Computed Tomography (CT) to measure plant morphology and transcriptome profiling (RNA-seq) to measure gene expression, the project will use the Euler Characteristic Transform (ECT) and the Mapper algorithm, two Topological Data Analysis (TDA) techniques, to extract the total information embedded in the leaf morphology of Arabidopsis accessions with contrasting developmental reproducibility. The ECT is mathematically proven to distinguish any object from any other, and the Mapper algorithm is used to visualize underlying data structures as a graph. Specific aims include: 1) using the ECT to measure the total information embedded in leaf shape and benchmarking against traditional methods to see how much “hidden” phenotypic information is revealed when measured comprehensively; 2) generating RNA-Seq gene expression profiles from identical leaves, visualizing the underlying data structure as a Mapper graph; the same will be done for phenotypic data as measured by the ECT; and, 3) predicting the precise leaf shape features associated with gene expression signatures using deep learning. By converting underlying molecular and phenotypic data structures into node embeddings, an encoder-decoder neural network will align molecular and phenotypic Mapper graphs. The result will be a mapping of gene expression profiles to features of leaf shape as predicted using deep learning methods on underlying data structures. All project outcomes will be made publicly available through long term data repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
生物是通过分子过程表达的基因组中嵌入的信息的结果。测序技术允许生物学家从基因组中提取几乎所有信息含量。但是,在基因组测序方面,测量生物没有采取的效果:与基因组不同,尚不可能测量嵌入有机形式的信息的总数。如果可以提取生物体中包含的所有信息,则可以开发出一种模型,该模型将解决生物学的巨大挑战之一,即从其基因组信息中预测生物体的能力。在这个项目中,生物学尚未完全探索的数学方法将通过测量其结构来提取数据中的信息。这个数学领域具有座右铭:所有形状都是数据,并且所有数据都有形状。通过测量叶子的形状和基因表达模式,该项目将它们视为可以从中提取嵌入信息的数据。然后,深度学习方法将用于预测其基因表达谱的叶子的形状。作为该项目之间的联系及其对社会的影响的一部分,来自美国和墨西哥的学生将通过植物和Python(一种双语,免费的可用课程,作为将从未编码的植物生物学家组合在一起的一种手段,与植物科学的数据科学家一起,与构成美国农业的植物科学的群体一起,来分析数据。使用X射线计算机断层扫描(CT)来测量植物形态和转录组概况(RNA-SEQ)来测量基因表达,该项目将使用Euler特征转换(ECT)和映射算法,两种拓扑数据分析(TDA)技术,将嵌入式信息嵌入了叶片的整体访问中,以解决叶片的介绍。在数学上证明了ECT可以将任何对象与任何对象区分开,并且映射器算法用于将基础数据结构视为图形。具体目的包括:1)使用ECT来测量叶片形状中嵌入的总信息,并根据传统方法进行基准测试,以查看经过全面测量时揭示了多少“隐藏”表型信息; 2)从相同的叶子中生成RNA-Seq基因表达谱,将基础数据结构视为映射图;通过ECT衡量的表型数据也会这样做。 3)预测使用深度学习与基因表达特征相关的精确叶片特征。通过将潜在的分子和表型数据结构转换为节点嵌入,编码器折线神经网络将使分子和表型映射器图对齐。结果将是将基因表达曲线映射到叶片形状的特征,如使用深层学习方法所预测的。所有项目成果将通过长期数据存储库公开获得。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为是通过评估来获得的珍贵支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arjun Krishnan其他文献
Nanostructured Organogels via Molecular Self‐Assembly
通过分子自组装的纳米结构有机凝胶
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Arjun Krishnan;Kristen E. Roskov;R. Spontak - 通讯作者:
R. Spontak
Renewal-Reward Process Formulation of Motor Protein Dynamics
运动蛋白动力学的更新奖励过程公式
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.5
- 作者:
Arjun Krishnan;B. Epureanu - 通讯作者:
B. Epureanu
Predicting High-Risk Plaques in Familial Hypercholesterolemia Using Clinical Variables and Coronary Artery Calcium
使用临床变量和冠状动脉钙预测家族性高胆固醇血症的高风险斑块
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
B. Jaltotage;A. Abraham;J. Pang;Arjun Krishnan;B. Chow;A. Ihdayhid;Juan Lu;G. Watts;G. Dwivedi - 通讯作者:
G. Dwivedi
A network-based drug repurposing approach identifies new treatment opportunities for the systemic chronic inflammation underlying multiple complex diseases
基于网络的药物再利用方法为多种复杂疾病背后的全身慢性炎症确定了新的治疗机会
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Stephanie L. Hickey;Alexander McKim;Christopher A Mancuso;Arjun Krishnan - 通讯作者:
Arjun Krishnan
Stationary coalescing walks on the lattice
网格上的固定聚结行走
- DOI:
10.1007/s00440-018-0893-2 - 发表时间:
2018 - 期刊:
- 影响因子:2
- 作者:
J. Chaika;Arjun Krishnan - 通讯作者:
Arjun Krishnan
Arjun Krishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arjun Krishnan', 18)}}的其他基金
CAREER: Assigning comprehensive, standardized sample annotations to enhance the ability to discover, use, and interpret millions of –omics profiles
职业:分配全面、标准化的样本注释,以增强发现、使用和解释数百万个组学概况的能力
- 批准号:
2328140 - 财政年份:2022
- 资助金额:
$ 33.39万 - 项目类别:
Continuing Grant
CAREER: Assigning comprehensive, standardized sample annotations to enhance the ability to discover, use, and interpret millions of –omics profiles
职业:分配全面、标准化的样本注释,以增强发现、使用和解释数百万个组学概况的能力
- 批准号:
2045651 - 财政年份:2021
- 资助金额:
$ 33.39万 - 项目类别:
Continuing Grant
First Passage Percolation and Related Models
第一通道渗滤及相关模型
- 批准号:
2002388 - 财政年份:2020
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 33.39万 - 项目类别:
Continuing Grant