Laser Directed Energy Deposition Processing of Exchange-Biased Bulk Nanocomposite Permanent Magnets Using Tailored Ferromagnetic-Matrix Powder

使用定制铁磁基体粉末激光定向能量沉积加工交换偏置块体纳米复合材料永磁体

基本信息

  • 批准号:
    2310234
  • 负责人:
  • 金额:
    $ 57.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Permanent magnets play an indispensable role in enabling clean energy technologies, including wind turbines, hydroelectric power generators, and electric vehicle, etc. However, the magnets used in clean energy technologies require a large amount of critical rare-earth elements (e.g., neodymium) associated with supply chain complexities, environmentally hazardous extraction, and energy-intensive production. New materials design paradigms and energy-efficient processing schemes for creating permanent magnets are thus urgently needed. This award supports fundamental research to explore material and manufacturing innovations in making bulk nanocomposite permanent magnets without using rare-earth metals. The team will synergistically combine computational material designs with novel metal additive manufacturing and experimental analysis efforts to examine the relationships between additive processing, material compositions and microstructures, and functional response in new nanocomposite permanent magnets. The project has the potential to drastically enhance the economic and energy security of the Nation via the development of renewable energy technologies. Research collaboration with the Commonwealth Center for Advanced Manufacturing will further broaden project impacts and promote workforce development in the field of advanced manufacturing. In addition, the team will incorporate project-related materials into ongoing teaching workshops partnered with the Richmond Math and Science Centers for K-12 outreach.The overarching goal of this research is to design, fabricate, and investigate structure-property relations in additively manufactured bulk nanocomposite permanent magnets that demonstrate anisotropic microstructure with the maximum energy products in the range of around 15 mega-gauss-oersted. To achieve this, computational micromagnetic simulation tools will be employed to guide alloy designs, with the magnetic material fabrications and experimental validation of magnetic properties performed for down-selected alloy compositions. The fundamental strategy is to generate "phase-separated" bulk nanocomposite magnetic alloys consisting of submicron-scale antiferromagnetic precipitates with acicular geometry dispersed in a ferromagnetic (FM) matrix with directionally-aligned grains. In this manner, it is hypothesized that alternate sources of magnetic anisotropy (e.g., exchange-biased anisotropy) that lead to high coercivity may be harnessed to replace strong magnetocrystalline anisotropy fields – a characteristic feature of rare-earth permanent magnets. The team will explore laser blown-powder directed energy deposition (DED) additive manufacturing for processing nanocomposite permanent magnets, which is a least explored route. The special DED machine, assisted with a magnetic field, will use powder feedstock with compositions calculated from computational designs that include an FM matrix to produce novel directionally-aligned grains, metastable precipitates, and crystallographic textures, which will be analyzed in microstructures and magnetic properties. The project will not only achieve insight regarding the process-structure-property relationships of additively-manufactured nanocomposite permanent magnet materials, it will also provide a fundamental understanding of the magnetic-field-assisted DED technology for the fabrication of complex multicomponent/multiphase magnetic alloys such as high-entropy magneto-caloric alloys and magnetic shape memory alloys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
永久磁铁在启用清洁能源技术中起着必不可少的作用,包括风力涡轮机,水力发电发电机和电动汽车等。但是,清洁能源技术中使用的磁铁需要大量关键的稀有稀有元素(例如,与供应链复杂性,环境危险的提取性的供应型型,又具有耐酸性的生产和能量强度的生产和能量强度的生产。因此,迫切需要新的材料设计范例和用于创建永久磁铁的节能处理方案。该奖项支持基础研究,以探索材料和制造创新,以制造散装纳米复合材料的永久磁铁,而无需使用稀土金属。该团队将合成的计算材料设计与新型金属添加剂制造和实验分析工作相结合,以检查添加剂处理,材料组成和微观结构之间的关系,以及新的纳米复合材料永久磁铁中的功能响应。该项目有可能通过开发可再生能源技术来大大增强国家的经济和能源安全。与高级制造中心的研究合作将进一步扩大项目影响,并促进高级制造领域的劳动力发展。 In addition, the team will incorporate project-related materials into ongoing teaching workshops partnered with the Richmond Math and Science Centers for K-12 outreach.The overarching goal of this research is to design, fabricate, and investigate structure-property relations in additionally manufactured bulk nanocomposite permanent magnets that demonstrate anisotropic microstructure with the maximum energy products in the range of around 15 mega-gauss-oers​​ted.为此,将采用计算微磁模拟工具来指导合金设计,并对磁性材料的捏造以及对下座合金组成进行的磁性特性的实验验证。基本策略是生成“相分离”的块状纳米复合磁合金,由亚微米尺度的抗磁性沉淀物组成,并在铁电磁(FM)基质中散布的含有定向晶粒的含量几何形状分散。通过这种方式,假设磁各向异性的替代来源(例如,交换有偏见的各向异性)可以利用高矫正性来替代强磁晶型各向异性领域 - 稀有剂量恒定磁体的特征。该团队将探索激光吹制的定向能量沉积(DED)增加了用于处理纳米复合材料永久磁铁的制造,这是最少探索的路线。特殊的DED机器辅助磁场,将使用粉末原料和由计算设计计算出的组合物,其中包括FM矩阵,以产生新型的定向晶粒,可稳态的沉淀物和晶体学纹理,这些晶体将以微结构和磁性特性进行分析。该项目不仅将就额外制造的纳米复合永久磁铁材料的过程结构质量关系获得见解通过使用基金会的智力优点和更广泛影响的评论标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Radhika Barua其他文献

Radhika Barua的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于肿瘤微环境乳酸控制的纳米杂合工程菌精准指导CD47纳米抗体用于结肠癌免疫治疗研究
  • 批准号:
    32301187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向P2X7R受体PET显像并指导变构调控分子抑制神经炎症改善阿尔茨海默病小鼠认知功能研究
  • 批准号:
    82372004
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
脑缺血后神经元活性调控突触PS外翻指导小胶质细胞C1q依赖的突触修剪参与功能康复的机制研究
  • 批准号:
    82372577
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于ELF5分子机制研究指导的三阴乳腺癌精准治疗方法构建及应用
  • 批准号:
    32371539
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
机器学习指导二维TMCs横向异质结可控合成及其室温气体传感器
  • 批准号:
    62374134
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
  • 批准号:
    2338951
  • 财政年份:
    2024
  • 资助金额:
    $ 57.53万
  • 项目类别:
    Standard Grant
Shu complex and RAD52 function in DNA damage recognition and subsequent repair
Shu 复合物和 RAD52 在 DNA 损伤识别和后续修复中发挥作用
  • 批准号:
    10864084
  • 财政年份:
    2023
  • 资助金额:
    $ 57.53万
  • 项目类别:
Development of resource efficient manufacturing process to produce sustainable hardmetal powders for laser Directed Energy Deposition
开发资源高效的制造工艺,生产用于激光定向能量沉积的可持续硬质合金粉末
  • 批准号:
    10072446
  • 财政年份:
    2023
  • 资助金额:
    $ 57.53万
  • 项目类别:
    Grant for R&D
Collaborative Research: Probing Particle Impact onto Molten Metal Pool in Laser Directed Energy Deposition by Synchrotron Imaging and Process Modeling
合作研究:通过同步加速器成像和过程建模探测激光定向能量沉积中的粒子对熔融金属池的影响
  • 批准号:
    2139074
  • 财政年份:
    2022
  • 资助金额:
    $ 57.53万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing Particle Impact onto Molten Metal Pool in Laser Directed Energy Deposition by Synchrotron Imaging and Process Modeling
合作研究:通过同步加速器成像和过程建模探测激光定向能量沉积中的粒子对熔融金属池的影响
  • 批准号:
    2245141
  • 财政年份:
    2022
  • 资助金额:
    $ 57.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了