Collaborative Research: : Mathematical modeling and computation of morphological instabilities in reactive fluids driven out of equilibrium

合作研究::失去平衡的反应流体形态不稳定性的数学建模和计算

基本信息

  • 批准号:
    2309798
  • 负责人:
  • 金额:
    $ 24.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Novel morphological instabilities and phase changes generated by localized reactions in interfacial regions between reacting fluids can be found in physical, biological and engineering systems such as smoldering flame fronts, biomembrane formation, and oil recovery systems. For instance, the formation of solid-like gels at water-oil interfaces during oil recovery processes can be unfavorable because gel build-up can clog wells and pipelines. On the other hand, gel formation can actually be beneficial in flow diversion processes by diverting the flow away from porous rocks and enhancing oil recovery. The interface dynamics and morphologies of this open system cannot be predicted solely by an equilibrium phase diagram, and mathematical models and numerical simulations are needed to fully characterize the nonlinear, out-of-equilibrium dynamics. This project aims to establish a computational framework for models of non-equilibrium phenomena, and design algorithms and experiments to investigate the interface dynamics of complex, reactive fluids. This project will also provide interdisciplinary training for students, and research activities will help develop the next generation of mathematicians, scientists and engineers. The team of PIs consists of the three researchers from three different institutions, where training of graduate students on the topics of the project is expected. Studies of two or more fluids that are reactive, and flow through a porous medium, are fundamental to many fields. At equilibrium, the mixture may behave like a liquid or a gel (viscoelastic solid) depending on the concentrations of the components according to an equilibrium phase diagram. When driven out of equilibrium by, for instance, injection of one fluid into another, the morphology of the expanding interface between them can be very complex and strongly depends on an interplay between thermodynamic phase behavior and hydrodynamic forces. This project builds upon breakthroughs in modeling, computation, and experimental techniques to develop a unified mathematical framework that resolves the interface dynamics of reactive fluids driven out of equilibrium. Thermodynamically consistent equations governing the non-equilibrium dynamics of ternary reacting systems of immiscible fluids will be derived, focusing on the radial Hele-Shaw geometry as a prototype. Both sharp interface and diffuse interface numerical schemes (energy-stable, adaptive finite-difference methods using scalar auxiliary variables) will be developed and validated against asymptotic reductions to sharp interface models and new experimental data generated from this project. The integrated mathematical, computational and experimental approach will provide a framework for understanding the nonequilibrium dynamics, predicting the emergence of complex patterns and developing strategies for controlling the pattern formation process in fundamental multiphysics interface problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在反应流体之间界面区域中局部反应产生的新型形态不稳定性和相变,可以在物理,生物学和工程系统(例如闷烧的火焰阵线,生物膜形成和石油回收系统)中找到。例如,在石油回收过程中,在水油界面上形成固体凝胶可能是不利的,因为凝胶堆积会堵塞井和管道。另一方面,凝胶形成实际上可以通过将流从多孔岩石转移并增强油回收率来对流动转移过程有益。该开放系统的界面动力学和形态不能仅通过平衡相图来预测,并且需要数学模型和数值模拟来充分表征非线性的,超平衡的动力学。 该项目旨在为非平衡现象模型建立一个计算框架,并设计算法和实验,以研究复杂的反应流体的界面动力学。该项目还将为学生提供跨学科培训,研究活动将有助于发展下一代数学家,科学家和工程师。 PI团队由来自三个不同机构的三名研究人员组成,在该研究人员中,研究生对项目主题进行了培训。对两个或多个反应性且流过多孔介质的流体的研究对于许多领域都是基础的。在平衡时,根据平衡相图,混合物可能表现得像液体或凝胶(粘弹性固体)。当将一种流体注入另一种流体中,将其驱动到平衡中时,它们之间扩展界面的形态可能非常复杂,并且很大程度上取决于热力学相行为与流体动力学之间的相互作用。该项目建立在建模,计算和实验技术中的突破性基础上,以开发统一的数学框架,该框架解决了从平衡中驱动的反应流体的界面动力学。将得出不混溶性流体的三元反应系统的非平衡动力学的热力学一致方程,以径向的Hele-shaw几何形状为原型。将开发和验证尖锐的界面和扩散界面数值方案(使用标量辅助变量的能量稳定,适应性有限差异方法)都将得到开发和验证,并验证了该项目产生的渐近界面模型和新的实验数据的渐近降低和新的实验数据。综合的数学,计算和实验方法将为理解非平衡动态提供一个框架,预测复杂模式的出现,并制定策略来控制基本多物理界面问题中的模式形成过程。这奖反映了NSF的立法任务,并通过对基础的知识进行了评估,并通过评估来评估基金会的智力和广泛的影响力,并具有评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Shuwang Li其他文献

Weakly nonlinear analysis of the Saffman-Taylor problem in a radially spreading fluid annulus
径向扩散流体环中 Saffman-Taylor 问题的弱非线性分析
  • DOI:
    10.1103/physrevfluids.5.054002
    10.1103/physrevfluids.5.054002
  • 发表时间:
    2020
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Pedro H. A. Anjos;Shuwang Li
    Pedro H. A. Anjos;Shuwang Li
  • 通讯作者:
    Shuwang Li
    Shuwang Li
Search for the Lepton-Flavor-Violating Leptonic B 0 →μ ± τ ∓ and B 0 →e ± τ ∓
搜索违反轻子味的轻子 B 0 →μ ± τ ∓ 和 B 0 →e ± τ ∓
  • DOI:
    10.1103/physrevlett.93.241802
    10.1103/physrevlett.93.241802
  • 发表时间:
    2004
    2004
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Adi Bornheim;E. Lipeles;S. Pappas;A. Weinstein;R. Briere;G. Chen;T. Ferguson;G. Tatishvili;H. Vogel;M. E. Watkins;N. Adam;J. Alexander;K. Berkelman;D. Cassel;J. Duboscq;K. Ecklund;R. Ehrlich;L. Fields;R. Galik;L. Gibbons;B. Gittelman;R. Gray;S. Gray;D. Hartill;B. Heltsley;D. Hertz;L. Hsu;C. Jones;J. Kandaswamy;D. Kreinick;V. Kuznetsov;H. Mahlke;T. O. Meyer;P. Onyisi;J. Patterson;D. Peterson;J. Pivarski;D. Riley;J. Rosner;A. Ryd;A. Sadoff;H. Schwarthoff;M. Shepherd;W. Sun;J. Thayer;D. Urner;T. Wilksen;M. Weinberger;S. Athar;P. Avery;L. Breva;R. Patel;V. Potlia;H. Stoeck;J. Yelton;P. Rubin;C. Cawlfield;B. Eisenstein;G. Gollin;I. Karliner;Doseok Kim;N. Lowrey;P. Naik;C. Sedlack;M. Selen;J. Thaler;Justin Williams;J. Wiss;K. W. Edwards;D. Besson;K. Gao;D. Gong;Y. Kubota;Shuwang Li;R. Poling;A. Scott;A. Smith;C. Stepaniak;J. Urheim;Z. Metreveli;K. Seth;A. Tomaradze;P. Zweber;J. Ernst;K. Arms;K. Gan;H. Severini;P. Skubic;D. Asner;S. Dytman;S. Mehrabyan;J. Mueller;V. Savinov;Z. Li;A. Lopez;H. Mendez;J. Ramirez;G. Huang;D. Miller;V. Pavlunin;B. Sanghi;E. Shibata;I. Shipsey;G. Adams;M. Chassé;J. Cummings;I. Dankó;J. Napolitano;D. Cronin;C. S. Park;W. Park;J. Thayer;E. Thorndike;T. Coan;Y. Gao;F. Liu;R. Stroynowski;M. Artuso;C. Boulahouache;S. Blusk;J. Butt;E. Dambasuren;O. Dorjkhaidav;N. Menaa;R. Mountain;H. Muramatsu;R. Nandakumar;R. Redjimi;R. Sia;T. Skwarnicki;S. Stone;J. Wang;Kevin Zhang;A. Mahmood;S. Csorna;G. Bonvicini;D. Cinabro;M. Dubrovin
    Adi Bornheim;E. Lipeles;S. Pappas;A. Weinstein;R. Briere;G. Chen;T. Ferguson;G. Tatishvili;H. Vogel;M. E. Watkins;N. Adam;J. Alexander;K. Berkelman;D. Cassel;J. Duboscq;K. Ecklund;R. Ehrlich;L. Fields;R. Galik;L. Gibbons;B. Gittelman;R. Gray;S. Gray;D. Hartill;B. Heltsley;D. Hertz;L. Hsu;C. Jones;J. Kandaswamy;D. Kreinick;V. Kuznetsov;H. Mahlke;T. O. Meyer;P. Onyisi;J. Patterson;D. Peterson;J. Pivarski;D. Riley;J. Rosner;A. Ryd;A. Sadoff;H. Schwarthoff;M. Shepherd;W. Sun;J. Thayer;D. Urner;T. Wilksen;M. Weinberger;S. Athar;P. Avery;L. Breva;R. Patel;V. Potlia;H. Stoeck;J. Yelton;P. Rubin;C. Cawlfield;B. Eisenstein;G. Gollin;I. Karliner;Doseok Kim;N. Lowrey;P. Naik;C. Sedlack;M. Selen;J. Thaler;Justin Williams;J. Wiss;K. W. Edwards;D. Besson;K. Gao;D. Gong;Y. Kubota;Shuwang Li;R. Poling;A. Scott;A. Smith;C. Stepaniak;J. Urheim;Z. Metreveli;K. Seth;A. Tomaradze;P. Zweber;J. Ernst;K. Arms;K. Gan;H. Severini;P. Skubic;D. Asner;S. Dytman;S. Mehrabyan;J. Mueller;V. Savinov;Z. Li;A. Lopez;H. Mendez;J. Ramirez;G. Huang;D. Miller;V. Pavlunin;B. Sanghi;E. Shibata;I. Shipsey;G. Adams;M. Chassé;J. Cummings;I. Dankó;J. Napolitano;D. Cronin;C. S. Park;W. Park;J. Thayer;E. Thorndike;T. Coan;Y. Gao;F. Liu;R. Stroynowski;M. Artuso;C. Boulahouache;S. Blusk;J. Butt;E. Dambasuren;O. Dorjkhaidav;N. Menaa;R. Mountain;H. Muramatsu;R. Nandakumar;R. Redjimi;R. Sia;T. Skwarnicki;S. Stone;J. Wang;Kevin Zhang;A. Mahmood;S. Csorna;G. Bonvicini;D. Cinabro;M. Dubrovin
  • 通讯作者:
    M. Dubrovin
    M. Dubrovin
Self-similar evolution of a precipitate in inhomogeneous elastic media
  • DOI:
    10.1016/j.jcrysgro.2012.04.020
    10.1016/j.jcrysgro.2012.04.020
  • 发表时间:
    2012-07-15
    2012-07-15
  • 期刊:
  • 影响因子:
  • 作者:
    Amlan Barua;Shuwang Li;Xiaofan Li;John Lowengrub
    Amlan Barua;Shuwang Li;Xiaofan Li;John Lowengrub
  • 通讯作者:
    John Lowengrub
    John Lowengrub
A Deterministic Mechanism for Side-branching in Dendritic Growth
树突生长中侧枝的确定性机制
  • DOI:
    10.3970/fdmp.2008.004.027
    10.3970/fdmp.2008.004.027
  • 发表时间:
    2008
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuwang Li;Xiangrong Li;J. Lowengrub;M. Glicksman
    Shuwang Li;Xiangrong Li;J. Lowengrub;M. Glicksman
  • 通讯作者:
    M. Glicksman
    M. Glicksman
Search for e+ e- → Λ0bΛ0b near threshold
在阈值附近搜索 e+ e- → Λ0bΛ0b
  • DOI:
  • 发表时间:
    2005
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Besson;T. Pedlar;D. Cronin;K. Gao;D. Gong;Y. Kubota;B. Lang;Shuwang Li;R. Poling;A. Scott;A. Smith;C. Stepaniak;S. Dobbs;Z. Metreveli;K. Seth;A. Tomaradze;P. Zweber;J. Ernst;A. Mahmood;K. Arms;K. Gan;H. Severini;D. Asner;S. Dytman;W. Love;S. Mehrabyan;J. Mueller;V. Savinov;Zheng Li;Alan D. Lopez;H. Mendez;J. Ramirez;G. Huang;D. Miller;V. Pavlunin;B. Sanghi;E. Shibata;I. Shipsey;G. Adams;M. Chassé;M. Cravey;J. Cummings;I. Dankó;J. Napolitano;Chawon Park;W. Park;J. Thayer;E. Thorndike;T. Coan;Y. Gao;F. Liu;R. Stroynowski;M. Artuso;C. Boulahouache;S. Blusk;J. Butt;E. Dambasuren;O. Dorjkhaidav;J. Li;N. Menaa
    D. Besson;T. Pedlar;D. Cronin;K. Gao;D. Gong;Y. Kubota;B. Lang;Shuwang Li;R. Poling;A. Scott;A. Smith;C. Stepaniak;S. Dobbs;Z. Metreveli;K. Seth;A. Tomaradze;P. Zweber;J. Ernst;A. Mahmood;K. Arms;K. Gan;H. Severini;D. Asner;S. Dytman;W. Love;S. Mehrabyan;J. Mueller;V. Savinov;Zheng Li;Alan D. Lopez;H. Mendez;J. Ramirez;G. Huang;D. Miller;V. Pavlunin;B. Sanghi;E. Shibata;I. Shipsey;G. Adams;M. Chassé;M. Cravey;J. Cummings;I. Dankó;J. Napolitano;Chawon Park;W. Park;J. Thayer;E. Thorndike;T. Coan;Y. Gao;F. Liu;R. Stroynowski;M. Artuso;C. Boulahouache;S. Blusk;J. Butt;E. Dambasuren;O. Dorjkhaidav;J. Li;N. Menaa
  • 通讯作者:
    N. Menaa
    N. Menaa
共 13 条
  • 1
  • 2
  • 3
前往

Shuwang Li的其他基金

Collaborative Research: Modeling and Computation of Three-Dimensional Multicomponent Vesicles in Complex Flow Domains
合作研究:复杂流域中三维多组分囊泡的建模与计算
  • 批准号:
    1720420
    1720420
  • 财政年份:
    2017
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Computationally Efficient Solvers for Power System Simulation
协作研究:用于电力系统仿真的计算高效求解器
  • 批准号:
    1307625
    1307625
  • 财政年份:
    2013
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Reactive instabilities, colloids, and interfacial flows: experiments, modeling and numerics
合作研究:反应不稳定性、胶体和界面流动:实验、建模和数值
  • 批准号:
    1217277
    1217277
  • 财政年份:
    2012
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Computational and theoretical approaches for the morphological control of material microstructures
合作研究:材料微观结构形态控制的计算和理论方法
  • 批准号:
    0914923
    0914923
  • 财政年份:
    2009
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

热辐射影响的可压缩流体模型的数学问题研究
  • 批准号:
    12371222
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于“效应成分-谱学/药效学/数学关联数据挖掘”整合的银柴胡质量标志物发现研究
  • 批准号:
    82360769
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
2023年(第四届)国际生物数学与医学应用研讨会
  • 批准号:
    12342004
  • 批准年份:
    2023
  • 资助金额:
    8.00 万元
  • 项目类别:
    专项项目
基于非交换留数理论和Gauss-Bonnet定理的流形几何性质研究
  • 批准号:
    12301063
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
高维零磁扩散磁流体力学方程组若干数学问题的研究
  • 批准号:
    12371227
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
  • 批准号:
    2401257
    2401257
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
    $ 24.27万
  • 项目类别:
    Continuing Grant
    Continuing Grant