Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs

具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法

基本信息

  • 批准号:
    2309670
  • 负责人:
  • 金额:
    $ 36.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

This project concentrates on the development of novel computational methods for efficiently solving problems that have conserved physical properties or highly oscillatory wave solutions. The new conservative methods can preserve physically interested quantities and allow accurate and stable simulations over a long time period. They will be useful for applications in various fields, such as fluid dynamics, nonlinear optics, plasma physics, and Bose-Einstein condensates. The new multiscale methods can accurately and efficiently capture highly oscillatory wave solutions. They will have a positive impact in the study of quantum mechanics and great potential in application to the design of ultrafast and low consumption nanoscale electronic devices. The methods developed in the project will help people understand theoretically unresolved issues and provide new frameworks for devising competitive numerical algorithms for solving other complex problems. The project will also involve mentoring and training of undergraduate and graduate students, including the traditionally underrepresented groups. It will provide students great opportunities to integrate research into their educational experience.The project includes the following topics: (1) in-depth investigation of the novel conservative discontinuous Galerkin (DG) method with implicit penalty parameters for the Korteweg-de Vries (KdV) equation, (2) development of conservative DG methods via implicit penalization for more complicated wave models with conservation properties, including the Hirota-Satsuma coupled KdV system, the Schrodinger-KdV system, the abcd-Boussinesq system, and the two-dimensional Zakharov-Kuznetsov (ZK) equation and Kadomtsev-Petviashvili (KP) equation, (3) design, analysis, and implementation of hybridizable discontinuous Galerkin (HDG) methods with multiscale basis for efficiently capturing highly oscillatory solutions of Schrodinger equations on coarse meshes. The novel idea in the first two topics is to enforce conservation properties via implicit penalization, and this can be generalized to other types of problems that feature conservation of physical quantities. The methods in the third topic integrate the efficient HDG framework and the multiscale non-polynomial basis functions, which makes them perform better than traditional finite element methods for Schrodinger equations on both coarse meshes and fine meshes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目集中于开发新型计算方法,以有效地解决具有保守物理特性或高度振荡波解决方案的问题。新的保守方法可以保留对身体感兴趣的数量,并在长期内允许准确稳定的模拟。它们将用于各种领域的应用,例如流体动力学,非线性光学元件,等离子体物理学和Bose-Einstein冷凝物。新的多尺度方法可以准确有效地捕获高度振荡的波解决方案。他们将对量子力学的研究产生积极的影响,并在应用超快和低消耗纳米级电子设备的设计方面具有巨大的潜力。项目中开发的方法将帮助人们理解理论上未解决的问题,并为设计竞争性数值算法提供新的框架,以解决其他复杂问题。该项目还将涉及对本科生和研究生的指导和培训,包括传统代表性不足的群体。它将为学生提供充分的机会将研究整合到他们的教育经验中。该项目包括以下主题:(1)对新颖的保守性不连续的Galerkin(DG)方法的深入调查以及对Korteweg-de Vries(KDV)方程(KDV)方程(KDV)方程的隐性惩罚参数,(2)通过对保守性DG方法进行保守的dg损失模型的HER HER,包括HEH HER,包括Korteweg-de Vries(KDV)方程(KDV)方程(KDV)方程(KDV)方程(2) coupled KdV system, the Schrodinger-KdV system, the abcd-Boussinesq system, and the two-dimensional Zakharov-Kuznetsov (ZK) equation and Kadomtsev-Petviashvili (KP) equation, (3) design, analysis, and implementation of hybridizable discontinuous Galerkin (HDG) methods with multiscale basis for efficiently捕获粗网格上Schrodinger方程的高度振荡溶液。前两个主题中的新颖思想是通过隐式惩罚来执行保护特性,这可以推广到具有物理量保存的其他类型的问题。 The methods in the third topic integrate the efficient HDG framework and the multiscale non-polynomial basis functions, which makes them perform better than traditional finite element methods for Schrodinger equations on both coarse meshes and fine meshes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Dong其他文献

Cascaded fiber up-taper modal interferometer and its application as fiber sensor
级联光纤上锥模干涉仪及其光纤传感器应用
  • DOI:
    10.1109/jlt.2018.2878040
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Sh;ong Dong;Bo Dong;Changyuan Yu;Yong Xin Guo
  • 通讯作者:
    Yong Xin Guo
In-situ investigation of 3D mechanical microstructure at nanoscale: Nano-CT imaging method of local small region in large scale sample
纳米级3D机械微观结构的原位研究:大尺寸样品局部小区域的纳米CT成像方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bo Dong;Feng Xu;Xiaofang Hu
  • 通讯作者:
    Xiaofang Hu
The Homotopy Method for the Complete Solution of Quadratic Two-parameter Eigenvalue Problems
二次双参数特征值问题完全求解的同伦法
Carbohydrate-active enzyme profiles of Lactiplantibacillus plantarum strain 84-3 contribute to flavor formation in fermented dairy and vegetable products.
  • DOI:
    10.1016/j.fochx.2023.101036
  • 发表时间:
    2023-12-30
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Tingting Liang;Tong Jiang;Zhuang Liang;Ni Zhang;Bo Dong;Qingping Wu;Bing Gu
  • 通讯作者:
    Bing Gu
An improved enthalpy-based lattice Boltzmann model for heat and mass transfer of the freezing process
用于冷冻过程传热传质的改进的基于焓的格子玻尔兹曼模型
  • DOI:
    10.1016/j.applthermaleng.2016.06.122
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Xin Zhao;Bo Dong;Weizhong Li;Binlin Dou
  • 通讯作者:
    Binlin Dou

Bo Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Dong', 18)}}的其他基金

Multiscale and Hybridizable Discontinuous Galerkin Methods for Dispersive Equations and Systems
色散方程和系统的多尺度和可混合非连续伽辽金方法
  • 批准号:
    1818998
  • 财政年份:
    2018
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant
Development of superconvergent hybridizable discontinuous Galerkin methods and mixed methods for Korteweg-de Vries type equations
超收敛杂化间断伽辽金方法和 Korteweg-de Vries 型方程混合方法的发展
  • 批准号:
    1419029
  • 财政年份:
    2014
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Continuing Grant
SBIR Phase I: Fiber Optic Distributed Acoustic Sensor
SBIR 第一阶段:光纤分布式声学传感器
  • 批准号:
    1247818
  • 财政年份:
    2013
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant

相似国自然基金

公司创投应对不连续且复杂环境的微观基础:基于灵活性、协同性、控制性的价值创造
  • 批准号:
    72372002
  • 批准年份:
    2023
  • 资助金额:
    42 万元
  • 项目类别:
    面上项目
考虑局部非均匀和不连续纤维的SiC/SiC涡轮叶盘疲劳寿命预测
  • 批准号:
    52305153
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
超高强Cu-Ni-Sn合金微结构调控及不连续沉淀抑制机理研究
  • 批准号:
    52361008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
新型冠状病毒nsp13调节不连续转录过程中模板转换的分子机制研究
  • 批准号:
    32370159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于各向异性的TiAl合金片层组织不连续粗化转变机理
  • 批准号:
    52371015
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
  • 批准号:
    2208391
  • 财政年份:
    2022
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
  • 批准号:
    568008-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 36.54万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了