BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems

BRITE Pivot:流固耦合问题的量子计算和机器学习

基本信息

项目摘要

This Boosting Research Ideas for Transformative and Equitable Advances in Engineering (BRITE) Pivot award will fund research that accelerates the discovery of solutions to grand challenges involving interactions between fluids and solids, with applications to aquatic habitat restoration, optimized energy efficiency of turbine generators, and the study and treatment of heart disease, thereby promoting the progress of science and advancing the national prosperity, welfare, and health. Understanding the physics of fluid-structure interactions is a critical prerequisite for such progress. Advanced computational tools play an important role but are limited by resource and time constraints, even on existing supercomputers. This project will address these limitations by developing new computational tools that rely on state-of-the-art machine learning and quantum computing techniques and that also anticipate implementation on future generations of quantum computers. Quantum computing is still five to ten years away from a practical gate-based digital quantum computer but has shown promise for handling probabilistic rather than deterministic problems already on available quantum computers and by inspiring new algorithms for classical computers. Machine learning has revolutionized many industries such as image/speech recognition and is expected to have a great impact on scientific computing. This research is integrated with activities that aim to increase interest in science, technology, engineering, and math among the public and students, including through accessible online videos, new curricular content, and integration of undergraduate students in interdisciplinary research.This research aims to make fundamental contributions to the computational study of turbulent fluid-structure interactions by pivoting from classical approaches to new computing concepts, namely quantum computing and machine learning, enabling significant improvements in computational speed and efficiency for both forward and inverse problems. Consistent with the probabilistic perspectives that underpin both quantum computing and machine learning, a key concept of this research is reformulating traditional fluid-structure interaction problems into probabilistic ones. To this end, this project will extend the filtered density function approach for turbulence modeling to large-eddy simulations of particle-turbulence interactions, develop scientific machine learning techniques for inverse discovery of closure terms and forward and inverse prediction of fluid-structure interactions for energy harvesting applications, and develop quantum-ready and quantum-inspired algorithms for mixing applications. These developments will help the principal investigator gain expertise in novel research tools that have the potential to lead to significant advancement of fundamental knowledge and enable application to problems as diverse as cardiovascular flows, bioinspired flow control and sensing, or control of biomimetic aquatic robots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项促进工程变革和公平进步的研究理念 (BRITE) 枢轴奖将资助研究,加速发现涉及流体和固体之间相互作用的重大挑战的解决方案,以及应用于水生栖息地恢复、优化涡轮发电机的能源效率,以及心脏病的研究和治疗,从而促进科学进步,促进国家繁荣、福利和健康。了解流体-结构相互作用的物理学是取得这一进展的关键先决条件。先进的计算工具发挥着重要作用,但受到资源和时间的限制,即使在现有的超级计算机上也是如此。该项目将通过开发新的计算工具来解决这些限制,这些工具依赖于最先进的机器学习和量子计算技术,并且预计将在未来几代量子计算机上实现。量子计算距离实用的基于门的数字量子计算机还有五到十年的时间,但它已经显示出处理现有量子计算机上已有的概率性问题而不是确定性问题的希望,并通过启发经典计算机的新算法。机器学习已经彻底改变了图像/语音识别等许多行业,并有望对科学计算产生巨大影响。这项研究与旨在提高公众和学生对科学、技术、工程和数学兴趣的活动相结合,包括通过可访问的在线视频、新课程内容以及本科生融入跨学科研究。这项研究旨在通过从经典方法转向新的计算概念(即量子计算和机器学习),对湍流流体-结构相互作用的计算研究做出了根本性贡献,从而显着提高了正向和逆向问题的计算速度和效率。与支撑量子计算和机器学习的概率观点一致,这项研究的一个关键概念是将传统的流体-结构相互作用问题重新表述为概率问题。为此,该项目将把用于湍流建模的过滤密度函数方法扩展到粒子-湍流相互作用的大涡模拟,开发科学的机器学习技术来逆向发现封闭项以及对能量的流体-结构相互作用进行正向和逆向预测收集应用程序,并为混合应用程序开发量子就绪和量子启发的算法。这些进展将帮助首席研究员获得新颖研究工具的专业知识,这些工具有可能导致基础知识的显着进步,并能够应用于心血管流量、仿生流量控制和传感或仿生水生机器人控制等多种问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iman Borazjani其他文献

Large eddy simulations of supersonic flow over a cylinder using an immersed boundary method
使用浸入边界法对圆柱体上的超音速流进行大涡模拟
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Akbarzadeh;Iman Borazjani
  • 通讯作者:
    Iman Borazjani

Iman Borazjani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Iman Borazjani', 18)}}的其他基金

CDS&E: A Validated Hybrid Echo-CFD Framework for Patient-Specific Cardiac Assessment
CDS
  • 批准号:
    2152869
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2227496
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling Flow Separation via Traveling Wave Actuators
合作研究:通过行波执行器控制流动分离
  • 批准号:
    1905355
  • 财政年份:
    2019
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1829408
  • 财政年份:
    2018
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
CAREER: Fluid-Structure Interaction (FSI) in Biological Flows
职业:生物流中的流固耦合 (FSI)
  • 批准号:
    1453982
  • 财政年份:
    2015
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant

相似国自然基金

寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
  • 批准号:
    82272582
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
电枢起动阶段枢轨接触面金属熔融物喷射特性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
极端条件电磁轨道发射高速载流枢轨耦合特性演化机理研究
  • 批准号:
    92166204
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    地区科学基金项目
梯度多孔β钛合金人工可动寰枢椎的生物力学及骨整合机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
极端条件电磁发射枢轨摩擦副材料表面层时空演化机制及其非线性构效关系与发射动力学研究
  • 批准号:
    92166202
  • 批准年份:
    2021
  • 资助金额:
    300 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

BRITE Pivot: Quantum Computing and Machine Learning for Fluid-Structure Interaction Problems
BRITE Pivot:流固耦合问题的量子计算和机器学习
  • 批准号:
    2227496
  • 财政年份:
    2023
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Standard Grant
Noninvasive evaluation of GLP-1 receptor in central nervous system
中枢神经系统GLP-1受体的无创评估
  • 批准号:
    21K20931
  • 财政年份:
    2021
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Cancer cell reprogramming targeting immune checkpoint in brain tumors
针对脑肿瘤免疫检查点的癌细胞重编程
  • 批准号:
    18K09001
  • 财政年份:
    2018
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular mechanisms leading to the balance between qualitative and quantitative changes of the neural progenitor cells
导致神经祖细胞质与量变化平衡的分子机制
  • 批准号:
    17H03684
  • 财政年份:
    2017
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Association analyses between aminotransferase AGXT2 and mental disorders.
转氨酶 AGXT2 与精神障碍之间的关联分析。
  • 批准号:
    25293251
  • 财政年份:
    2013
  • 资助金额:
    $ 53.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了