RUI: Supporting LIGO Calibration, Detector Characterization, and Data Analysis in O4
RUI:支持 O4 中的 LIGO 校准、探测器表征和数据分析
基本信息
- 批准号:2308796
- 负责人:
- 金额:$ 20.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The fourth observing run (O4) for ground-based gravitational-wave detectors LIGO, Virgo, and KAGRA is scheduled to begin in the spring of 2023. O4 promises to bring the largest network of ground-based gravitational-wave detectors and the best detector sensitivity seen to date. This award supports the Kenyon College LIGO Scientific Collaboration (LSC) group, consisting of PI L. Wade and co-PI M. Wade, and between four and six undergraduate research students, in their research pursuits in the field of gravitational-wave physics. The Kenyon College LSC group will contribute to the operation of the LIGO calibration pipeline and implementation of a novel LIGO calibration monitor, the construction of new machine learning algorithms for predicting the presence of noise artifacts in gravitational-wave strain data using information from detector auxiliary channels, and the development of more robust and sophisticated ways of measuring the neutron-star equation of state. This award also supports two established, impactful astronomy and physics research groups that engage a diverse population of high school and undergraduate students: The Kenyon College Radio and Optical Astronomy Research (ROAR) group and the Mount Vernon High School (MVHS) astronomy club. ROAR is a no-barrier to entry research group that targets recruitment at first- and second-year potential physics majors at Kenyon College. Students in ROAR engage in discussions about current astronomy and gravitational physics research topics, do independent investigations into topics of interest, engage in hands-on astronomy and physics related activities, and contribute to outreach efforts in physics and astronomy. The MVHS astronomy club is run out of the local high school near Kenyon College and regularly engages 10-20 high school students in hands-on activities and research topics in astronomy and gravitational physics. This award has three main research focusses: calibration, data quality, and neutron-star equation of state (EOS) parameter estimation. This award will contribute to the operation of the LIGO calibration pipeline used to produce the final calibrated strain data, which is an effort lead by co-PI M. Wade, development and implementation of a monitoring tool for the low-latency calibrated data stream, and exploration of methods for producing a low-latency calibration systematic error estimate. The second focus area in this award is related to inferring the neutron star EOS from binary neutron star gravitational-wave events. PI L. Wade proposes to improve the flexibility of the parameterized models used to measure the neutron star EOS, develop inference software to marginalize over parameters measured in other contexts, and build software to allow the data to inform the number of parameters to use in the EOS models. Additionally, PI L. Wade will contribute to EOS inference efforts on any binary neutron star signals found in O4. The final set of research activities involve exploring improvements to the low-latency data quality identification system known as iDQ. iDQ uses machine learning algorithms (MLAs) to predict the presence of loud transient noise events, known as glitches, in the strain data using only auxiliary information. PI L. Wade and co-PI M. Wade propose to build hierarchical MLAs that will account for the variability in different auxiliary subsystems and the variability in glitch morphologies, aiming to improve the efficiency with which glitches can be identified in low-latency data, thereby improving the data quality information available to low-latency astrophysical analyses. The final research focus area will be in searching for a newly theorized signal known as a gravitational glint which is produced by perturbers along the line-of-sight from a compact binary event to an observer. If no such signals are found in archival LIGO/Virgo data then upper bounds could be set on the density of perturbers in the universe.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地基引力波探测器 LIGO、Virgo 和 KAGRA 的第四次观测运行 (O4) 计划于 2023 年春季开始。O4 承诺带来最大的地基引力波探测器网络和最好的探测器迄今为止所见的敏感性。该奖项支持凯尼恩学院 LIGO 科学合作 (LSC) 小组在引力波物理领域的研究活动,该小组由 PI L. Wade 和联合 PI M. Wade 以及四到六名本科生组成。凯尼恩学院 LSC 小组将致力于 LIGO 校准管道的运行和新型 LIGO 校准监视器的实施,构建新的机器学习算法,以利用探测器辅助通道的信息来预测引力波应变数据中噪声伪影的存在,以及开发更强大和更复杂的测量中子星状态方程的方法。 该奖项还支持两个已建立的、有影响力的天文学和物理研究小组,吸引了不同的高中生和本科生:凯尼恩学院射电和光学天文学研究(ROAR)小组和弗农山高中(MVHS)天文学俱乐部。 ROAR 是一个无门槛的研究小组,旨在招募凯尼恩学院物理专业一年级和二年级的潜在学生。 ROAR 的学生参与有关当前天文学和引力物理研究主题的讨论,对感兴趣的主题进行独立调查,参与天文学和物理相关的实践活动,并为物理和天文学的推广工作做出贡献。 MVHS 天文学俱乐部由凯尼恩学院附近的当地高中运营,定期邀请 10 至 20 名高中生参与天文学和引力物理方面的实践活动和研究主题。 该奖项有三个主要研究重点:校准、数据质量和中子星状态方程(EOS)参数估计。 该奖项将有助于用于生成最终校准应变数据的 LIGO 校准管道的运行,这是由联合 PI M. Wade 领导的一项工作,开发和实施了用于低延迟校准数据流的监控工具,并探索产生低延迟校准系统误差估计的方法。该奖项的第二个重点领域涉及从双中子星引力波事件推断中子星 EOS。 PI L. Wade 提议提高用于测量中子星 EOS 的参数化模型的灵活性,开发推理软件以边缘化在其他环境中测量的参数,并构建软件以允许数据告知在中子星 EOS 中使用的参数数量。 EOS 模型。此外,PI L. Wade 还将为 O4 中发现的任何双中子星信号的 EOS 推断工作做出贡献。最后一组研究活动涉及探索对称为 iDQ 的低延迟数据质量识别系统的改进。 iDQ 使用机器学习算法 (MLA) 仅使用辅助信息来预测应变数据中是否存在较大的瞬态噪声事件(称为毛刺)。 PI L. Wade 和联合 PI M. Wade 建议构建分层 MLA,以考虑不同辅助子系统的可变性和毛刺形态的可变性,旨在提高在低延迟数据中识别毛刺的效率,从而提高低延迟天体物理分析可用的数据质量信息。最后的研究重点领域将是寻找一种新的理论化信号,称为引力闪烁,该信号是由沿着从紧凑双星事件到观察者的视线的扰动物产生的。 如果在 LIGO/Virgo 档案数据中没有发现此类信号,则可以对宇宙中扰动物的密度设定上限。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Wade其他文献
Leslie Wade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Wade', 18)}}的其他基金
RUI: Building a Robust Software Infrastructure for Parameterizing and Measuring the Neutron Star Equation of State
RUI:构建强大的软件基础设施来参数化和测量中子星状态方程
- 批准号:
2011874 - 财政年份:2020
- 资助金额:
$ 20.11万 - 项目类别:
Continuing Grant
相似国自然基金
面向风电场配套储能系统的容量优化与控制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
综采成套装备信息映射配套模型及智能决策方法研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
多功能协同作用的防污涂料及其配套防腐涂料研究
- 批准号:U1706225
- 批准年份:2017
- 资助金额:280.0 万元
- 项目类别:联合基金项目
交变轨迹切削破岩机理与配套工具的设计理论研究
- 批准号:51504209
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
内蒙古河套灌区“春麦冬播”高产高效生态生理机制及配套栽培技术研究
- 批准号:31560365
- 批准年份:2015
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Conference: CRA-E Workshop: Supporting career building, student research experiences, and advancement of teaching track faculty
会议:CRA-E 研讨会:支持职业建设、学生研究经验和教学轨道教师的进步
- 批准号:
2421010 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Standard Grant
Social sustainable diets: Supporting the transition to plant-based foods through close relationships
社会可持续饮食:通过密切关系支持向植物性食品的过渡
- 批准号:
ES/Y01040X/1 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Fellowship
Understanding and Supporting the Whole Student: An NSF S-STEM-NET Hub
了解并支持全体学生:NSF S-STEM-NET 中心
- 批准号:
2326042 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Continuing Grant
Smart Cues Toolkit: Supporting Physical Activity at Home with Interactive Contextual Cues
智能提示工具包:通过交互式上下文提示支持家庭体育活动
- 批准号:
EP/X036766/1 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Research Grant
Supporting Elementary Students’ Computer Science Skills and Interest through Engagement with Low-cost, Adaptable Robots
通过与低成本、适应性强的机器人互动来支持小学生的计算机科学技能和兴趣
- 批准号:
2342489 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Standard Grant