RUI: Supporting LIGO Calibration, Detector Characterization, and Data Analysis in O4
RUI:支持 O4 中的 LIGO 校准、探测器表征和数据分析
基本信息
- 批准号:2308796
- 负责人:
- 金额:$ 20.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The fourth observing run (O4) for ground-based gravitational-wave detectors LIGO, Virgo, and KAGRA is scheduled to begin in the spring of 2023. O4 promises to bring the largest network of ground-based gravitational-wave detectors and the best detector sensitivity seen to date. This award supports the Kenyon College LIGO Scientific Collaboration (LSC) group, consisting of PI L. Wade and co-PI M. Wade, and between four and six undergraduate research students, in their research pursuits in the field of gravitational-wave physics. The Kenyon College LSC group will contribute to the operation of the LIGO calibration pipeline and implementation of a novel LIGO calibration monitor, the construction of new machine learning algorithms for predicting the presence of noise artifacts in gravitational-wave strain data using information from detector auxiliary channels, and the development of more robust and sophisticated ways of measuring the neutron-star equation of state. This award also supports two established, impactful astronomy and physics research groups that engage a diverse population of high school and undergraduate students: The Kenyon College Radio and Optical Astronomy Research (ROAR) group and the Mount Vernon High School (MVHS) astronomy club. ROAR is a no-barrier to entry research group that targets recruitment at first- and second-year potential physics majors at Kenyon College. Students in ROAR engage in discussions about current astronomy and gravitational physics research topics, do independent investigations into topics of interest, engage in hands-on astronomy and physics related activities, and contribute to outreach efforts in physics and astronomy. The MVHS astronomy club is run out of the local high school near Kenyon College and regularly engages 10-20 high school students in hands-on activities and research topics in astronomy and gravitational physics. This award has three main research focusses: calibration, data quality, and neutron-star equation of state (EOS) parameter estimation. This award will contribute to the operation of the LIGO calibration pipeline used to produce the final calibrated strain data, which is an effort lead by co-PI M. Wade, development and implementation of a monitoring tool for the low-latency calibrated data stream, and exploration of methods for producing a low-latency calibration systematic error estimate. The second focus area in this award is related to inferring the neutron star EOS from binary neutron star gravitational-wave events. PI L. Wade proposes to improve the flexibility of the parameterized models used to measure the neutron star EOS, develop inference software to marginalize over parameters measured in other contexts, and build software to allow the data to inform the number of parameters to use in the EOS models. Additionally, PI L. Wade will contribute to EOS inference efforts on any binary neutron star signals found in O4. The final set of research activities involve exploring improvements to the low-latency data quality identification system known as iDQ. iDQ uses machine learning algorithms (MLAs) to predict the presence of loud transient noise events, known as glitches, in the strain data using only auxiliary information. PI L. Wade and co-PI M. Wade propose to build hierarchical MLAs that will account for the variability in different auxiliary subsystems and the variability in glitch morphologies, aiming to improve the efficiency with which glitches can be identified in low-latency data, thereby improving the data quality information available to low-latency astrophysical analyses. The final research focus area will be in searching for a newly theorized signal known as a gravitational glint which is produced by perturbers along the line-of-sight from a compact binary event to an observer. If no such signals are found in archival LIGO/Virgo data then upper bounds could be set on the density of perturbers in the universe.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
针对地面重力波检测器Ligo,处女座和Kagra的第四次观察跑(O4)计划于2023年春季开始。O4承诺将带来最大的地面重力波波检测器网络,迄今为止看到的最佳检测器敏感性。该奖项支持Kenyon College Ligo Scientific Collakoration(LSC)小组,由Pi L. Wade和Co-Pi M. Wade组成,在重力波物理学领域的研究中,在四到六名本科研究专业的研究中。 Kenyon College LSC小组将有助于实施LIGO校准管道和新型Ligo校准监视器的实施,这是新机器学习算法的构建,以预测使用检测器辅助渠道中的信息和更高的状态方程式的探索器辅助通道中的噪声伪像数据中的噪声伪像,并使用检测器辅助通道中的信息进行了信息。 该奖项还支持两个既定的,有影响力的天文学和物理研究小组,这些小组与高中和本科生的各种人群:肯尼恩学院广播电台和光学天文学研究(Roar)小组和弗农山(MVHS)天文学俱乐部。 咆哮是进入入学研究小组的无障碍者,他针对肯尼恩学院的第一年和二年级物理专业的招聘。 咆哮的学生参与了有关当前天文学和引力物理学研究主题的讨论,对感兴趣的主题进行独立调查,从事动手的天文学和物理与物理学活动,并为物理和天文学方面的外展工作做出了贡献。 MVHS天文学俱乐部在肯尼恩学院附近的当地高中用完,并定期与10-20名高中生进行动手活动和研究主题。 该奖项具有三个主要的研究重点:校准,数据质量和国家 /地区参数估计。 该奖项将有助于用于生成最终校准应变数据的LIGO校准管道的运行,这是Co-Pi M. Wade的一项努力,开发和实施了用于低延迟校准数据流的监视工具,并探索了生成低规定校准系统误差估算的方法。该奖项中的第二个焦点区域与从二进制中子恒星重力波事件中推断中子星EO有关。 Pi L. Wade提议提高用于测量中子星EOS的参数化模型的灵活性,开发推理软件以在其他情况下测量的参数边缘化,并构建软件以允许数据告知在EOS模型中使用的参数数量。此外,Pi L. Wade将在O4中发现的任何二进制中子星信号上有助于EOS推理。最后一组研究活动涉及探索称为IDQ的低延迟数据质量识别系统的改进。 IDQ使用机器学习算法(MLA)来预测仅使用辅助信息在应变数据中的大声瞬态噪声事件(称为故障)的存在。 Pi L. Wade和Co-Pi M. Wade提议建立层次的MLA,以说明不同辅助子系统的可变性和毛刺形态的可变性,旨在提高可以在低层次数据中识别出小故障的效率,从而提高低层数据,从而改善数据质量信息,以改善低层体系分析的数据质量信息。最终的研究重点区域将搜索一个新理论的信号,称为引力闪烁,该信号是由Perturbers从紧凑型二进制事件到观察者的视线沿线产生的。 如果在档案馆/处女座数据中找不到此类信号,则可以将上限设置为宇宙中的Perturbers的密度。该奖项反映了NSF的法定任务,并认为使用基金会的智力优点和更广泛影响的审查标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Wade其他文献
Leslie Wade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Wade', 18)}}的其他基金
RUI: Building a Robust Software Infrastructure for Parameterizing and Measuring the Neutron Star Equation of State
RUI:构建强大的软件基础设施来参数化和测量中子星状态方程
- 批准号:
2011874 - 财政年份:2020
- 资助金额:
$ 20.11万 - 项目类别:
Continuing Grant
相似国自然基金
心理应激诱导NE引发睾丸支持细胞铁死亡导致雄鼠生殖损伤的机制研究
- 批准号:82371612
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
支持隐私保护的群智感知多任务数据聚合方法研究
- 批准号:62302173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极端气候事件的牧户行为响应与发展韧性研究:基于支持政策视角
- 批准号:72373145
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
支持深度伪造检测的精细化高效训练集生成方法研究
- 批准号:62372423
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Social sustainable diets: Supporting the transition to plant-based foods through close relationships
社会可持续饮食:通过密切关系支持向植物性食品的过渡
- 批准号:
ES/Y01040X/1 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Fellowship
膵組織幹細胞のインスリン産生細胞への分化機構とその分化を支持する微小環境の解明
阐明胰腺组织干细胞向胰岛素产生细胞的分化机制以及支持这种分化的微环境
- 批准号:
24K11699 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
がん細胞分裂を支持する分子基盤の解明と治療応用の検討
阐明支持癌细胞分裂的分子基础并检查治疗应用
- 批准号:
24K09824 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: CRA-E Workshop: Supporting career building, student research experiences, and advancement of teaching track faculty
会议:CRA-E 研讨会:支持职业建设、学生研究经验和教学轨道教师的进步
- 批准号:
2421010 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Standard Grant
磁気支持操作による非接触3D光造形システムの構築
利用磁支撑操作构建非接触式 3D 立体光刻系统
- 批准号:
24K07263 - 财政年份:2024
- 资助金额:
$ 20.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)