Collaborative Research: Enabling Large-scale Multidisciplinary Design Optimization with Unsteady Simulations: A Hybrid Pseudo-spectral Approach

协作研究:通过非定常模拟实现大规模多学科设计优化:混合伪谱方法

基本信息

项目摘要

This project will develop a breakthrough multidisciplinary design optimization (MDO) framework that uses unsteady multiphysics computer simulations to optimize system performance automatically. The research is motivated by the lack of effective numerical algorithms to shorten the design period for large-scale engineered systems with unsteady processes, such as spacecraft, aircraft, and wind turbines. This issue is further exacerbated by ever-increasing expectations for system performance and safety. The automated MDO framework will significantly reduce the design cycle time for transformative systems that are poised to improve the nation’s economic prosperity and change how people live and connect, such as urban air taxis and systems supporting space travel. Furthermore, this project will advance the knowledge of complex mechanisms and interactions in large-scale engineered systems, which would otherwise be hard to obtain solely by human intuition. This project will also conduct educational and outreach activities for underrepresented minority and K-12 students to encourage STEM engagement, promote diversity and inclusion, and stimulate students' interest in engineering design and optimization.The research objective of this project is to enable the gradient-based multidisciplinary design optimization (MDO) of large-scale engineered systems governed by unsteady processes. The project will develop a new hybrid pseudo-spectral (HPS) adjoint algorithm to compute unsteady gradients for a broad range of disciplines efficiently. The originality of the HPS algorithm is that it effectively combines the robustness of time-accurate analysis and the speed of pseudo-spectral adjoint to enable efficient computation of high-dimensional unsteady gradients. The project will investigate the fundamental characteristics of the HPS algorithm and develop a modular architecture to couple any number of disciplines for large-scale unsteady MDO. It will demonstrate the framework by conducting urban air mobility electric aircraft and offshore wind turbine MDO that considers the unsteady coupling between fluid mechanics, structures, heat transfer, and dynamics. With further development, the framework can be extended to more disciplines, such as control and multiphase flow. The unsteady MDO framework will be open to the public to promote collaborations in the engineering design community. The HPS algorithm is general and expected to benefit many other fundamental research areas beyond MDO, including surrogate modeling, error and uncertainty analyses, and machine learning. Moreover, this project is anticipated to create a catalytic effect in the engineering design industry to transform the traditional, human-supervised design process into a more automated one.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发一种突破性的多学科设计优化(MDO)框架,该框架使用非稳态多物理场计算机模拟来自动优化系统性能,该研究的动机是缺乏有效的数值算法来缩短具有非稳态过程的大型工程系统的设计周期。由于对系统性能和安全性的期望不断提高,这一问题进一步加剧,自动化 MDO 框架将显着缩短有望改进的变革性系统的设计周期。国家的经济繁荣并改变人们的生活和联系方式,例如城市空中出租车和支持太空旅行的系统。此外,该项目将增进对大型工程系统中复杂机制和相互作用的了解,否则这些知识将很难获得。该项目还将针对代表性不足的少数族裔和 K-12 学生开展教育和外展活动,以鼓励 STEM 参与,促进多样性和包容性,并激发学生对工程设计和优化的兴趣。该项目的研究目标是实现基于梯度的多学科设计该项目将开发一种新的混合伪谱(HPS)伴随算法,以有效地计算广泛学科的非稳态梯度。HPS 算法的独创性在于。它有效地结合了时间精确分析的鲁棒性和伪谱伴随的速度,以实现高维非稳态梯度的高效计算。该项目将研究 HPS 算法的基本特征并开发一种新的 HPS 算法。它将通过进行城市空中机动电动飞机和海上风力涡轮机 MDO 来演示该框架,该框架考虑了流体力学、结构、传热和动力学之间的不稳定耦合。随着进一步的发展,该框架可以扩展到更多学科,例如控制和多相流。研究领域超出MDO,包括代理建模、误差和不确定性分析以及机器学习,预计将在工程设计行业中产生催化效应,将传统的人工监督设计过程转变为更加自动化的过程。该奖项通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joaquim Martins其他文献

New insights into Plant natriuretic peptide evolution: From the lysogenic conversion in Xanthomonas to the lateral transfer to the whitefly Bemisia tabaci.
植物利钠肽进化的新见解:从黄单胞菌的溶原转化到横向转移到粉虱烟粉虱。
  • DOI:
    10.1016/j.gene.2022.146326
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    J. S. Patané;L. M. Moreira;Marcus de Melo Teixeira;Joaquim Martins;J. Setubal;A. Varani
  • 通讯作者:
    A. Varani
Comparative genomics of Xylella fastidiosa suggests determinants of host-specificity and expands its mobile genetic elements repertoire
苛养木杆菌的比较基因组学揭示了宿主特异性的决定因素并扩展了其移动遗传元件库
  • DOI:
    10.1101/2021.10.17.464729
  • 发表时间:
    2021-10-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillermo Uceda;O. Feitosa;C. Santiago;P. Pierry;Paulo A Zaini;W. O. de Santana;Joaquim Martins;Deibs Barbosa;L. Digiampietri;J. Setubal;A. D. da
  • 通讯作者:
    A. D. da
Candida krusei reservoir in a neutropaenia unit: molecular evidence of a foe?
中性粒细胞减少症病房中的克柔念珠菌储库:敌人的分子证据?
Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U
巴西圣保罗动物园基金会从堆肥中分离出的分枝杆菌和分枝杆菌噬菌体的表征以及新分枝杆菌噬菌体簇 U 的创建
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    James Daltro Lima;C. Viana;Daniel V. Conde Oliveira;Gabriel Esquitini Machado;Michelle Cristiane da Silva Rabello;Joaquim Martins;L. F. Martins;L. Digiampietri;A. D. da;J. Setubal;D. Russell;D. Jacobs;W. Pope;G. Hatfull;S. Leão
  • 通讯作者:
    S. Leão
Genetic Diversity of Xylella fastidiosa Plasmids Assessed by Comparative Genomics
通过比较基因组学评估苛养木杆菌质粒的遗传多样性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    P. Pierry;Guillermo Uceda;O. Feitosa;Joaquim Martins;W. O. de Santana;H. Coletta;Paulo A Zaini;A. D. da
  • 通讯作者:
    A. D. da

Joaquim Martins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joaquim Martins', 18)}}的其他基金

Enabling the Design of Large-Scale Complex Engineered Systems using Self-Organizing Optimization Algorithms
使用自组织优化算法实现大规模复杂工程系统的设计
  • 批准号:
    1435188
  • 财政年份:
    2014
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop: The Future of Multidisciplinary Design Optimization - Advancing the Design of Complex Systems, Fort Worth, Texas, September 16, 2010
协作研究:研讨会:多学科设计优化的未来 - 推进复杂系统的设计,德克萨斯州沃思堡,2010 年 9 月 16 日
  • 批准号:
    1042740
  • 财政年份:
    2010
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 33.28万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了