CAS: Collaborative Research: Processive Ring-Opening Metathesis Polymerization Through Molecularly Confined Catalysts
CAS:合作研究:通过分子限域催化剂进行开环易位聚合
基本信息
- 批准号:2305566
- 负责人:
- 金额:$ 34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry (MSN) program and the Chemical Catalysis (CAT) program in the Division of Chemistry, Jia Niu of Boston College and Wenyu Huang of Iowa State University are developing ring-opening metathesis polymerization (ROMP) catalyzed by organometallic ruthenium complexes confined within molecularly defined cages. Despite the significance of ROMP in producing a plethora of functional polymers, existing techniques still cannot completely prevent chain transfer and termination, in particular when low-strain monomers are involved. As a result, mixtures of linear and cyclic macromolecules of different sizes are formed that are difficult to separate. This research endeavors to directly address this unmet challenge and introduce a distinct strategy for processive ROMP. In this strategy, polymerization catalysts will be encapsulated in molecularly defined cage structures, such that, ideally only monomers, but not nascent polymers, can access the catalyst. This will thereby inhibit the chain transfer and termination caused by the interaction between the catalyst and the nascent polymer, resulting in linear macromolecules with controlled molecular weights. The developed methodology will also be applied to ROMP of sustainability-oriented monomers that are considered challenging for ROMP due to their low strain. These monomers include cyclic alkenes with low ceiling temperatures and those consisting of degradable functionalities. This research will provide interdisciplinary training for students in polymer synthesis and sustainability. The collaborative team will additionally develop a hybrid three-week summer workshop aimed to introduce polymer chemistry principles and practices into 3D-printing. The workshop will be integrated with existing outreach programs to stimulate interest in polymer science and catalysis among college and high school students in the communities served by Boston College and Iowa State University.Synthetic polymers ranging from commodity products to specialty goods are at the center of modern society. Among many properties, molecular weight, sequence, and dispersity are essential in determining the material performance of polymers. Therefore, the precise control over these properties is the central goal in modern synthetic polymer chemistry. This research will focus on developing processive ring-opening metathesis polymerization (ROMP) of low-strain cyclic alkenes through confining organometallic ruthenium catalysts into molecularly defined cages. Such an approach is expected to allow access to monomer molecules but prevent the nascent polymer chains from accessing these confined catalysts. As a result, well-defined, high, and ultra-high molecular weight, low dispersity polymers from ROMP could be realized. The first objective will focus on design of homogeneous and heterogeneous Zr-based cages using the reversable aperture opening/closing approach. These cages will then be utilized to encapsulate ruthenium-based Grubbs and Hoveyda-Grubbs ROMP catalysts. The second objective will leverage molecularly confined catalysts to enable polymerization of sustainability-oriented monomers containing degradable functionalities. Lastly, kinetic behaviors of ROMP mediated by molecularly confined catalysts will be systematically investigated. The basic guiding principles associated with this project are general and have the potential to be applied to various other catalyst-mediated chain-growth polymerization techniques in which the control of termination and/or chain-transfer events is desirable.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大分子,超分子和纳米化学(MSN)计划和化学催化计划(CAT)的支持下,波士顿学院的Jia Niu和爱荷华州立大学的Jia niu和爱荷华州立大学的Jia niu正在开发开环的凝结复合(ROMP)(ROMP)(ROMP)由限制在分子定义的笼子内的有机金属弦谐复合物催化。 尽管ROMP在产生大量功能聚合物方面具有重要意义,但现有技术仍然无法完全防止链的传递和终止,特别是当涉及低晶体单体时。 结果,形成了很难分离的不同尺寸的线性和环状大分子的混合物。 这项研究努力直接应对这一未满足的挑战,并引入了一项与众不同的策略。 在这种策略中,聚合催化剂将封装在分子定义的笼子结构中,因此,理想情况下,只有单体而不是新生的聚合物才能访问催化剂。 因此,这将抑制由催化剂与新生聚合物之间的相互作用引起的链转移和终止,从而导致具有控制分子量的线性大分子。 开发的方法还将应用于以可持续性为导向的单体的romp,由于其低应变而被认为对ROMP充满挑战。这些单体包括天花板温度低的环状烯烃和由可降解功能组成的烯烃。 这项研究将为聚合物合成和可持续性的学生提供跨学科培训。 合作团队还将开发一个三周的混合动力夏季研讨会,旨在将聚合物化学原理和实践引入3D打印。该研讨会将与现有的外展计划集成,以刺激波士顿学院和爱荷华州立大学为聚合物科学和高中生之间的聚合物科学和催化的兴趣。从商品产品到特殊产品的合成聚合物在现代现代产品的中心。社会。在许多特性中,分子量,序列和分散性对于确定聚合物的材料性能至关重要。因此,对这些特性的精确控制是现代合成聚合物化学的核心目标。 这项研究将着重于通过将有机金属弦催化剂限制在分子定义的笼子中,从而将低压环烷烃的加工环化离子化聚合(ROMP)开发。 这种方法有望允许进入单体分子,但可以防止新生的聚合物链进入这些粘附的催化剂。 结果,可以实现,定义明确的,高和超高的分子量,可以实现低分散性聚合物。 第一个目标将着重于使用可逆的孔径开放/关闭方法设计均质和异类的基于ZR的笼子。 然后,这些笼子将用于封装基于钌的grubbs和hoveyda-grubbs romp催化剂。 第二个目标将利用分子限制的催化剂来实现含有可持续性的含有降解功能的聚合。 最后,将系统地研究由分子限制的催化剂介导的ROMP的动力学行为。与该项目相关的基本指南原则是一般的,并且有可能应用于其他各种催化剂介导的链生长聚合技术,其中应对终止和/或链条转移事件的控制。并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jia Niu其他文献
The Characteristics of Eutrophication and Its Correlation with Algae in Chongming Island’s Artificial River Network
崇明岛人工河网富营养化特征及其与藻类的相关性
- DOI:
10.1007/978-981-10-1204-4_9 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jianhua Li;Xiaochen Chen;Jia Niu;Xiaofeng Sun - 通讯作者:
Xiaofeng Sun
Click-PD: A Quantitative Method for Base-Modified Aptamer Discovery
Click-PD:碱基修饰适体发现的定量方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chelsea K. L. Gordon;D. Wu;T. Feagin;A. Pusuluri;Andrew T. Csordas;M. Eisenstein;C. Hawker;Jia Niu;H. Soh - 通讯作者:
H. Soh
Yangonindimers A-C, three new kavalactone dimers from Piper methysticum (kava)
Yangonindimers A-C,来自 Piper methysticum(卡瓦)的三种新卡瓦内酯二聚体
- DOI:
10.1080/14786419.2017.1312395 - 发表时间:
2017 - 期刊:
- 影响因子:2.2
- 作者:
Jia;Bailin Li;Yao Yuan;Linghui Nie;Jia Niu;D. Chiu;Zhifang Xu;Jie;S. Qiu - 通讯作者:
S. Qiu
How Can Price Promotions Make Consumers More Interested? An Empirical Study from a Chinese Supermarket
价格促销如何让消费者更感兴趣?
- DOI:
10.3390/su16062512 - 发表时间:
2024 - 期刊:
- 影响因子:3.9
- 作者:
Jia Niu;Shanshan Jin;Ge Chen;Xianhui Geng - 通讯作者:
Xianhui Geng
High-pulse-quality Yb-fiber amplifier generation of 10 μJ, 250 fs pulses at 500 kHz repetition rate
高脉冲质量 Yb 光纤放大器以 500 kHz 重复率生成 10 μJ、250 fs 脉冲
- DOI:
10.1016/j.ijleo.2019.163399 - 发表时间:
2020 - 期刊:
- 影响因子:3.1
- 作者:
Jia Niu;Bowen Liu;Huanyu Song;Sicong Zhao;Shaobei Li;Xinhua Gu;Minglie Hu - 通讯作者:
Minglie Hu
Jia Niu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jia Niu', 18)}}的其他基金
CAREER: CAS: Radical Cascade-Driven Polymerization and Depolymerization
职业:CAS:自由基级联驱动的聚合和解聚
- 批准号:
1944512 - 财政年份:2020
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
$ 34万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243099 - 财政年份:2023
- 资助金额:
$ 34万 - 项目类别:
Standard Grant