Assessing Atmospheric Impacts of the Hunga Tonga-Hunga Ha'apai Volcanic Eruption and Using It as a Natural Experiment to Evaluate an Earth System Model
评估洪加汤加-洪加哈派火山喷发的大气影响并将其用作评估地球系统模型的自然实验
基本信息
- 批准号:2302458
- 负责人:
- 金额:$ 51.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Volcanic eruptions can affect weather and climate through several different mechanisms. For example, highly explosive eruptions, like that of Mt. Pinatubo in 1991, often produce sulfur-containing droplets and particles high in Earth’s atmosphere. There, these aerosols scatter sunlight back to space and can cool global climate for more than a year. On January 15, 2022, the Hunga Tonga–Hunga Ha'apai volcano erupted explosively in the South Pacific. Satellite observations showed that the eruption introduced surprisingly little sulfur to the atmosphere but injected an enormous amount of water vapor into the stratosphere, about 10-20 miles above Earth’s surface. Water vapor is a greenhouse gas and is particularly effective at warming climate when it is in the stratosphere, where only trace amounts of water generally exist. The eruption increased the total global stratospheric water vapor content by roughly 10%, representing the largest single-source injection of stratospheric water vapor ever observed from space, and furthermore this excess water could persist for 5-10 years. The Tonga eruption therefore represents an unprecedented natural experiment on Earth’s atmosphere. This investigation will use observations and modeling to assess the atmospheric impacts of the eruption, including its effects on Earth’s energy budget via alterations to the amount of sunlight and infrared energy absorbed and emitted by the planet. The investigators will assess how the eruption affected stratospheric temperatures, circulation patterns throughout the atmosphere, and the annual ozone hole formation over Antarctica, which may be perturbed through chemical and physical mechanisms related to the eruption. More broadly, this project will evaluate how well an Earth System Model captures the observed perturbations to Earth’s atmosphere in the years following the eruption and identify improvements to models that remedy any deficiencies that are found.In a broader sense, this project will contribute to an improved understanding of the atmospheric and climate impacts and risks to global society posed by large volcanic eruptions, particularly those that erupt beneath the ocean surface like the 2022 Tonga event. Records of past volcanic activity recorded in ice cores from Greenland and Antarctica indicate that eruptions ten times more powerful than the 2022 Tonga event occur roughly once every 625 years, with potentially severe impacts on civilization. The scientists involved in this project will conduct simulations of such events to explore their potential impacts. They will also adapt an Earth System Model so that it can be used more readily by the scientific community to comprehensively study climate impacts from volcanic eruptions, for example by improving the ability of the model to track and isolate the influences of volcanic water vapor, sulfur, and ash. Finally, the investigators will train and mentor a Ph.D. student for this project and expand the material on volcano-climate interactions presented in the graduate- and undergraduate-level courses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
火山喷发会通过几种不同的机制影响天气和气候。例如,像1991年Pinatubo山一样,高度爆炸性的喷发通常会在地球大气中产生高含硫的液滴和颗粒。在那里,这些气溶胶将阳光散落回太空,并可以使全球气候冷却一年多。 2022年1月15日,匈牙利汤加 - 汉加·哈帕火山在南太平洋爆炸爆发。卫星观察结果表明,喷发引入了令人惊讶的大气中的硫磺,但将大量的水蒸气注入了稻草,这是地球表面上方约10-20英里的稻草。水蒸气是一种温室气体,在稻草球中尤其有效地加热气候,那里通常只有微量的水。喷发使全球平流层水蒸气含量增加了约10%,这是从空间观察到的平流层水蒸气最大的单源注入,而且这种超过水可能会持续5 - 10年。因此,汤加爆发代表了地球大气层上空前的自然实验。这项投资将利用观察结果和建模来评估喷发的大气影响,包括通过改变阳光和红外的量来对地球能量预算的影响。地球吸收并发出能量。研究人员将评估喷发如何影响平流层温度,整个大气中的循环模式以及南极上的年度臭氧孔形成,这可能会通过与喷发有关的化学和物理机制扰动。从更广泛的角度来看,该项目将评估地球系统模型在喷发后的几年中捕获了对地球大气的扰动的程度,并确定了纠正任何发现的任何不足的模型的改进。从一个更广泛的意义上,该项目将有助于改善对全球社会的大气和气候影响,例如大型派出了这些典型的派出了这些典型的环境,尤其是派出了这些效果。从格陵兰和南极洲的冰核记录的过去火山活动记录的记录表明,爆发比2022 Tonga事件的强大十倍,大约每625年发生一次,对文明产生了严重的影响。参与该项目的科学家将对此类事件进行模拟,以探索其潜在影响。它们还将调整地球系统模型,以便科学界可以更容易地使用它来全面研究火山喷发的气候影响,例如,通过提高模型跟踪和隔离火山水蒸气,硫和灰的影响的能力。最后,调查人员将训练和指导博士学位。该项目的学生并扩展了研究生和本科课程中提出的火山气候互动的材料。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Flanner其他文献
Mark Flanner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Flanner', 18)}}的其他基金
Collaborative Research: Closing the Gaps in Climate Models' Surface Albedo Schemes of Processes Driving the Darkening of the Greenland Ice Sheet
合作研究:缩小气候模型表面反照率方案中导致格陵兰冰盖变暗的过程的差距
- 批准号:
1712695 - 财政年份:2017
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
CAREER: Linking cryospheric processes across scales to model non-linear albedo feedback
职业:跨尺度连接冰冻圈过程以模拟非线性反照率反馈
- 批准号:
1253154 - 财政年份:2013
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
Collaborative Research: Aerosol concentrations, sources, and transport pathways within the Arctic polar dome during recent millennia
合作研究:近千年来北极穹顶内的气溶胶浓度、来源和传输路径
- 批准号:
1023387 - 财政年份:2010
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
相似国自然基金
大气颗粒物干沉降参数化方案改进及其对我国中东部PM2.5模拟影响评估
- 批准号:42207134
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
大气颗粒物干沉降参数化方案改进及其对我国中东部PM2.5模拟影响评估
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于苯多羧酸法的双碳同位素技术评估大气沉降对北部湾溶解性黑碳的影响
- 批准号:42203032
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多重分形的自然大气中微塑料老化影响多环芳烃赋存的模拟及生态风险评估
- 批准号:52160024
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
基于多重分形的自然大气中微塑料老化影响多环芳烃赋存的模拟及生态风险评估
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
EMBRACE-AGS-Seed: Quantification of Halogen Emission Impacts on Atmospheric Oxidation Rates in Urban Atmospheres
EMBRACE-AGS-Seed:量化卤素排放对城市大气氧化率的影响
- 批准号:
2409408 - 财政年份:2024
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
Unraveling the Impacts of Ocean Surface Current Gradients and Ocean Surface Waves on Atmospheric Boundary Layer Physical Processes over the Gulf Stream Using COAWST Model
使用 COAWST 模型揭示海面洋流梯度和海面波浪对湾流上空大气边界层物理过程的影响
- 批准号:
2307335 - 财政年份:2023
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
Using Earth-Observation data to classify Atmospheric Rivers and investigate their impacts on the stability of West Antarctic ice shelves
利用地球观测数据对大气河流进行分类并研究其对南极西部冰架稳定性的影响
- 批准号:
2886186 - 财政年份:2023
- 资助金额:
$ 51.88万 - 项目类别:
Studentship
CAREER: Understanding the Impacts of Future Sea Ice Loss on Large-Scale Patterns of Atmospheric Variability and Cold Air Outbreaks
职业:了解未来海冰流失对大气变化和冷空气爆发的大规模模式的影响
- 批准号:
2236771 - 财政年份:2023
- 资助金额:
$ 51.88万 - 项目类别:
Standard Grant
Causes and impacts of Greenland atmospheric Blocking changes
格陵兰岛大气阻塞变化的原因和影响
- 批准号:
NE/W005875/1 - 财政年份:2023
- 资助金额:
$ 51.88万 - 项目类别:
Research Grant