Collaborative Research: CISE-MSI: Active and Passive Internet Measurements for Inferring IoT Maliciousness at Scale
合作研究:CISE-MSI:用于大规模推断物联网恶意行为的主动和被动互联网测量
基本信息
- 批准号:2219773
- 负责人:
- 金额:$ 24.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Smart sensing technologies within the context of the Internet-of-Things (IoT) paradigm continue to be deployed in key sectors such as health, agriculture, energy and manufacturing. Indeed, it is estimated that around 30 billion IoT devices will be instrumented by 2030 to increase efficiencies and usability while decreasing costs and maintenance time. Nevertheless, such IoT devices lack even the most fundamental security measures, access policy controls, and patch management capabilities, making them attractive targets for attackers and state-sponsored actors who will abuse them to gain illegitimate access into critical networks while orchestrating them in order to impair other Internet-connected entities. Given the widespread deployment of such IoT devices, it becomes extremely challenging to promptly address their security concerns at-scale. This is mainly due to the lack of scalable methods, which could analyze large-scale, representative data, and the shortage of techniques that are efficient enough to be operated in near real-time. To this end, this project servers NSF’s mission to promote the progress of science by developing empirically-driven methods and techniques to quantity IoT insecurities at-large, while offering digital forensics means to comprehend the causes of their inherit vulnerabilities. The project also offers IoT-centric remediation tactics for supporting Internet security. The project fosters a number of educational activities while organizing female-focused workshops in addition to mentoring students within underrepresented groups from the three collaborating minority institutions. The project devises data-driven methodologies operating on actively and passively-collected network traffic and associated service banners to establish unique malicious IoT labeled empirical datasets. The project then designs and implements algorithms and formal methods rooted in supervised deep learning to fingerprint Internet-scale exploited IoT devices while developing IoT-specific feature engineering and clustering algorithms for characterizing and analyzing the malicious orchestration of IoT campaigns. Additionally, the project executes malware automated disassembly, decompilation, and analysis while engineering computational approaches on packet sequences via solving linear equation sets to investigate IoT stateless scanning modules and related deceiving techniques. This is leveraged to establish bogus connections with the infected devices using crafted packets in order to capture key IoT malware and digital forensic artifacts. To support operational IoT-specific cyber security operations, the project builds and makes available to the public a cyberinfrastructure, which indexes the inferred compromised IoT devices along with their related threat information including employed malware binaries and attacks’ tactics, techniques, and procedures. This aims at enabling proactive IoT security remediation, hands-on research and training, and forensic investigations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 范式背景下的智能传感技术继续在健康、农业、能源和制造等关键领域得到部署。事实上,预计到 2030 年将有约 300 亿个物联网设备被采用。然而,此类物联网设备甚至缺乏最基本的安全措施、访问策略控制和补丁管理功能,这使得它们成为攻击者和国家资助行为者的有吸引力的目标,他们会滥用它们来进行攻击。获得鉴于此类物联网设备的广泛部署,大规模地解决其安全问题变得极具挑战性,这主要是由于缺乏可扩展性。方法,可以分析大规模的、代表性的数据,并且缺乏足够有效的近乎实时操作的技术。为此,该项目服务于 NSF 通过开发经验驱动来促进科学进步的使命。量化物联网的方法和技术该项目还提供了以物联网为中心的补救策略,以支持互联网安全,同时还组织了以女性为中心的研讨会。该项目设计了数据驱动的方法,对主动和被动收集的网络流量和相关服务横幅进行操作,以建立独特的恶意物联网标记经验数据集。然后设计和实现植根于监督深度学习的算法和形式化方法,以对互联网规模的被利用物联网设备进行指纹识别,同时开发物联网特定的特征工程和聚类算法来表征和分析物联网活动的恶意编排此外,该项目还执行恶意软件自动反汇编。 、反编译和分析,同时通过求解线性方程组来设计数据包序列的计算方法,以研究物联网无状态扫描模块和相关欺骗技术,这被用来使用精心设计的数据包与受感染设备建立虚假连接,以捕获关键物联网。为了支持特定于物联网的网络安全操作,该项目构建并向公众提供基础设施,该基础设施对推断出的受损物联网设备及其相关威胁信息进行索引,包括所使用的恶意软件二进制文件和攻击策略,该奖项旨在实现主动的物联网安全补救、实践研究和培训以及取证调查。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。 。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Centric Machine Learning Approach for Early Ransomware Detection and Attribution
用于早期勒索软件检测和归因的以数据为中心的机器学习方法
- DOI:10.1109/noms56928.2023.10154378
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Vehabovic, A.;Zanddizari, H.;Ghani, N.;Shaikh, F.;Bou;Pour, M. Safaei;Crichigno, J.
- 通讯作者:Crichigno, J.
A Comprehensive Survey of Recent Internet Measurement Techniques for Cyber Security
网络安全最新互联网测量技术的综合调查
- DOI:10.1016/j.cose.2023.103123
- 发表时间:2023-05
- 期刊:
- 影响因子:5.6
- 作者:Safaei Pour, Morteza;Nader, Christelle;Friday, Kurt;Bou
- 通讯作者:Bou
An Unbiased Transformer Source Code Learning with Semantic Vulnerability Graph
利用语义漏洞图进行无偏 Transformer 源代码学习
- DOI:10.1109/eurosp57164.2023.00018
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Islam, Nafis Tanveer;De La Torre Parra, Gonzalo;Manuel, Dylan;Bou;Najafirad, Peyman
- 通讯作者:Najafirad, Peyman
Helium-based IoT Devices: Threat Analysis and Internet-scale Exploitations
基于氦的物联网设备:威胁分析和互联网规模的利用
- DOI:10.1109/wimob58348.2023.10187762
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Rammouz, Veronica;Khoury, Joseph;Klisura, Ðorđe;Safaei Pour, Morteza;Safaei Pour, Mostafa;Fachkha, Claude;Bou
- 通讯作者:Bou
On The Provision of Network-Wide Cyber Situational Awareness via Graph-Based Analytics
关于通过基于图的分析提供全网网络态势感知
- DOI:
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Husák, M.;Khoury, J.;Klisura, Ð.;Bou
- 通讯作者:Bou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morteza Safaei Pour其他文献
EV Charging Infrastructure Discovery to Contextualize Its Deployment Security
电动汽车充电基础设施发现,以实现其部署安全性
- DOI:
10.1109/tnsm.2023.3318406 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:5.3
- 作者:
Khaled Sarieddine;M. Sayed;C. Assi;Ribal Atallah;Sadegh Torabi;Joseph Khoury;Morteza Safaei Pour;E. Bou - 通讯作者:
E. Bou
A new CPA resistant software implementation for symmetric ciphers with smoothed power consumption
一种新的抗 CPA 软件实现,用于具有平滑功耗的对称密码
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Morteza Safaei Pour;M. Salmasizadeh - 通讯作者:
M. Salmasizadeh
A Comprehensive Survey of Recent Internet Measurement Techniques for Cyber Security
网络安全最新互联网测量技术的综合调查
- DOI:
10.1016/j.cose.2023.103123 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:0
- 作者:
Morteza Safaei Pour;Christelle Nader;Kurt Friday;E. Bou - 通讯作者:
E. Bou
Federated Learning Approach for Distributed Ransomware Analysis
分布式勒索软件分析的联合学习方法
- DOI:
10.48550/arxiv.2306.14090 - 发表时间:
2023-06-25 - 期刊:
- 影响因子:0
- 作者:
Aldin Vehabovic;Hadi Zanddizari;F. Shaikh;Nasir Ghani;Morteza Safaei Pour;E. Bou;J. Crichigno - 通讯作者:
J. Crichigno
A Near Real-Time Scheme for Collecting and Analyzing IoT Malware Artifacts at Scale
大规模收集和分析物联网恶意软件工件的近实时方案
- DOI:
10.1145/3538969.3539009 - 发表时间:
2022-08-23 - 期刊:
- 影响因子:0
- 作者:
Joseph Khoury;Morteza Safaei Pour;E. Bou - 通讯作者:
E. Bou
Morteza Safaei Pour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: HCC: Buenas - Giving All a Seat at the Table Using Mixed Reality
协作研究:CISE-MSI:DP:HCC:布埃纳斯 - 使用混合现实为所有人提供席位
- 批准号:
2318657 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318662 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
Collaborative Research:CISE-MSI:DP:CNS:Enabling On-Demand and Flexible Mobile Edge Computing with Integrated Aerial-Ground Vehicles
合作研究:CISE-MSI:DP:CNS:通过集成空地车辆实现按需且灵活的移动边缘计算
- 批准号:
2318663 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 24.5万 - 项目类别:
Continuing Grant