ERI: Harnessing Quantum-Classical Computing with a Cloud-Edge Framework for Cyber-Physical Systems

ERI:利用量子经典计算与网络物理系统的云边缘框架

基本信息

  • 批准号:
    2301884
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Cloud-Edge computing for Cyber-Physical Systems (CPS) and Quantum Computing have evolved independently, each addressing unique challenges and opportunities. Cloud-Edge-CPS research has predominantly focused on using classical resources, with limited exploration of the potential benefits that quantum-equipped devices may offer. This leaves a knowledge gap in understanding how quantum technologies could enhance Cloud-Edge-CPS performance and capabilities. Simultaneously, the quantum computing community has primarily focused on developing high-qubit, stable hardware and refining the underlying technology, with insufficient attention to broadening the application scenarios for low-qubit quantum machines, which are more accessible in the Noisy Intermediate-Scale Quantum (NISQ) era. This project aims to bridge the gap between these research domains by incorporating quantum-equipped devices, such as quantum edge nodes and quantum clouds, into a Cloud-Edge collaborative computing framework. It highlights the potential of low-qubit quantum machines in resource-constrained environments and introduces them to novel usage scenarios. Moreover, it fosters collaboration between various research and development communities, encompassing cloud-edge computing, cyber-physical systems, and quantum computing. The proposed quantum-classical system emphasizes extensibility, creating a supportive environment for researchers and engineers from these communities, ultimately stimulating innovation and cooperation across these disciplines. It will create opportunities for students to develop their quantum literacy at an underrepresented institution.This project will develop a quantum-equipped Cloud-Edge collaborative computing framework to effectively manage heterogeneous participants, network channels, and quantum noise on resource-constrained devices. The proposed framework consists of three primary components: (i) cloud servers located in remote data centers, providing ample quantum and classical resources; (ii) Edge nodes positioned near end devices with fewer resources than clouds, which can be categorized into two types - quantum-classical and classical-only edges; and (iii) End devices that act as system consumers, possessing minimal resources and potentially equipped with quantum processors. Based on the framework, it provides various modules, including end device registration, resource management, task modeling, and offloading estimation, exploring the potential advantages derived from quantum features such as superposition, entanglements, and teleportation. Specifically, the system builds a client profile for each end device. When a computing job arrives, it models a specific task and generates two execution plans, quantum-classical and classical-only. Based on predefined quantum services that have the potential to provide significant benefits to end devices (e.g., quadratic or exponential speedups), the system predicts the task execution time according to the plans and selects the one that satisfies the client's constraints and maximizes overall system performance. Due to the limited access to quantum machines, the project will implement a distributed quantum-classical Cloud-Edge-CPS simulator to conduct large-scale, cloud-based experiments and support a high degree of heterogeneity. Additionally, it will develop a runtime sampler to study quantum noise effects on resource-constrained NISQ machines, detailing how clouds may help manage inherent noise and errors. Ultimately, this project aims to enhance the performance, efficiency, and capabilities of Cloud-Edge collaborative computing systems by incorporating quantum-equipped devices and investigating their potential benefits in various application scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理系统 (CPS) 的云边缘计算和量子计算已经独立发展,各自应对独特的挑战和机遇。云-边缘-CPS 研究主要集中在使用经典资源,对配备量子的设备可能提供的潜在好处的探索有限。这在理解量子技术如何增强云-边缘-CPS 性能和功能方面留下了知识空白。同时,量子计算界主要关注于开发高量子位、稳定的硬件和完善底层技术,而对拓宽低量子位量子机的应用场景关注不够,而低量子位量子机在嘈杂的中尺度量子中更容易实现。 NISQ)时代。该项目旨在通过将量子边缘节点和量子云等配备量子的设备纳入云边缘协作计算框架来弥合这些研究领域之间的差距。它强调了低量子比特量子机器在资源受限环境中的潜力,并将其引入新的使用场景。此外,它还促进了各种研究和开发社区之间的合作,包括云边缘计算、网络物理系统和量子计算。所提出的量子经典系统强调可扩展性,为这些社区的研究人员和工程师创造一个支持性环境,最终刺激这些学科之间的创新与合作。它将为学生在代表性不足的机构中培养量子素养创造机会。该项目将开发一个配备量子的云边缘协作计算框架,以有效管理资源受限设备上的异构参与者、网络通道和量子噪声。所提出的框架由三个主要组成部分组成:(i)位于远程数据中心的云服务器,提供充足的量子和经典资源; (ii) 边缘节点位于终端设备附近,资源少于云,可分为两种类型:量子经典边缘和纯经典边缘; (iii) 作为系统消费者的终端设备,拥有最少的资源并可能配备量子处理器。基于该框架,它提供了各种模块,包括终端设备注册、资源管理、任务建模和卸载估计,探索叠加、纠缠和隐形传态等量子特征所衍生的潜在优势。具体来说,系统为每个终端设备构建客户端配置文件。当计算作业到达时,它会对特定任务进行建模并生成两个执行计划:量子经典和仅经典。基于有可能为终端设备提供显着优势(例如,二次或指数加速)的预定义量子服务,系统根据计划预测任务执行时间,并选择满足客户端约束并最大化整体系统性能的任务执行时间。由于量子机器的访问有限,该项目将实现分布式量子经典Cloud-Edge-CPS模拟器来进行大规模、基于云的实验并支持高度异构性。此外,它将开发一个运行时采样器来研究量子噪声对资源受限的 NISQ 机器的影响,详细说明云如何帮助管理固有的噪声和错误。最终,该项目旨在通过整合配备量子的设备并研究其在各种应用场景中的潜在优势,来增强云边缘协作计算系统的性能、效率和能力。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Mao其他文献

Efficient Communication for Mobile Devices in the New Era
  • DOI:
    10.20944/preprints202007.0461.v1
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Mao
  • 通讯作者:
    Ying Mao
Effect of high-field iMRI guided resection in cerebral glioma surgery: A randomized clinical trial.
高场 iMRI 引导切除术在脑胶质瘤手术中的效果:一项随机临床试验。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Zeyang Li;Yanyan Song;N. F. Farrukh Hameed;Shiwen Yuan;Shuai Wu;X. Gong;Dongxiao Zhuang;Junfeng Lu;Feng;T. Qiu;Jie Zhang;A. Aibaidula;Xu Geng;Zhong Yang;Weijun Tang;Hong Chen;Liangfu Zhou;Ying Mao;Jinsong Wu
  • 通讯作者:
    Jinsong Wu
Karyotype aberrations and gene mutations characteristics correlated it with UM prognosis
核型畸变和基因突变特征与 UM 预后相关
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ying Mao;Bin Li
  • 通讯作者:
    Bin Li
Clinical approach of using Onyx via transarterial access in treating tentorial dural arteriovenous fistula
Onyx经动脉入路治疗小脑幕硬脑膜动静脉瘘的临床方法
  • DOI:
    10.1179/1743132814y.0000000383
  • 发表时间:
    2014-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bing Leng;Ying Mao;Yuxiang Gu;Yujun Liao
  • 通讯作者:
    Yujun Liao
Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas
低级别胶质瘤中突变型和野生型异柠檬酸脱氢酶 1 的解剖位置差异
  • DOI:
    10.1080/00207454.2016.1270278
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Jinhua Yu;Zhifeng Shi;Chunhong Ji;Yuxi Lian;Yuanyuan Wang;Liang Chen;Ying Mao
  • 通讯作者:
    Ying Mao

Ying Mao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Mao', 18)}}的其他基金

XTRIPODS: Advancing Quantum Data Science Research and Education: Resilient Quantum Learning in NISQ era
XTRIPODS:推进量子数据科学研究和教育:NISQ 时代的弹性量子学习
  • 批准号:
    2343535
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
  • 批准号:
    2329020
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Standard Grant

相似国自然基金

利用斑马鱼模型研究量子点纳米材料暴露诱发视觉发育毒性及机制
  • 批准号:
    22376174
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用腔增强量子非破坏性测量提高镱光钟稳定度的实验研究
  • 批准号:
    12374467
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
利用光学参量放大技术优化量子信息处理
  • 批准号:
    12304390
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用机械参量放大调控杂化自旋-机械系统量子动力学的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于红外光高效利用的窄带隙PbSe量子点红外太阳能电池研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

太陽風照射による二次粒子放出を利用した小型天体表面物質の質量分析
利用太阳风辐射产生的二次粒子发射对小天体表面材料进行质量分析
  • 批准号:
    24K00693
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
スピン軌道相互作用を利用した集積スピン量子ビット基盤の開拓
利用自旋轨道相互作用开发集成自旋量子比特平台
  • 批准号:
    23K26486
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
自発的ラマン散乱過程の量子干渉を利用したフォノンコヒーレンス測定
利用自发拉曼散射过程的量子干涉进行声子相干测量
  • 批准号:
    24K06920
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
原子層結晶と量子干渉効果を利用した超伝導ヘリカル状態の直接検出
利用原子层晶体和量子干涉效应直接检测超导螺旋态
  • 批准号:
    23K23229
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
光量子化学機構を利用した超小型全固体uvLEDプラズマ推進機の創生
利用光量子化学机制创建超紧凑全固态UVLED等离子体推进装置
  • 批准号:
    23K26304
  • 财政年份:
    2024
  • 资助金额:
    $ 19.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了