ERI: Study of quantum entanglement and spatially different photon pair generation through intermodal four-wave mixing in few-mode and multimode fibers

ERI:通过少模和多模光纤中的模间四波混频研究量子纠缠和空间不同的光子对生成

基本信息

项目摘要

Substantial efforts are underway to expand the capacity of telecommunication systems utilizing spatial division multiplexing (SDM) as the demand for secure quantum communication systems combined with optical communication systems continues to grow. Propagating quantum states of light through current optical communication networks or future SDM systems can fulfill this demand and meet the essential consumer requirements for secure communication. The overarching aim of this research is to advance this objective through the Production and transmission of entangled photons over optical fibers. In the past, entangled photon pairs were created using bulk periodically poled crystals and waveguides utilizing their second-order nonlinearity. However, this method results in additional loss from fiber coupling and suffers from low photon yield at telecommunication bandwidths. The generation and transmission of entangled photons through optical fibers are desirable for a variety of applications. Nevertheless, the current approaches pose several challenges, including complexity, limited data generation, reliance on bulky and high-powered pulsed lasers, and the introduction of quantum noise. This study proposes the utilization of various modes of few-mode and multimode fibers to produce a pair of entangled photons, which will provide improved control over entanglement properties and better integration with SDM systems. This approach is expected to alleviate the challenges mentioned earlier. As part of the research and education integration, a graduate student working on this project will receive training in nonlinear fiber optics and quantum laser sources. Furthermore, undergraduate students will have the opportunity to participate in various stages of the project through research credits and summer internships in order to spark their interest in fiber-optic research at Missouri S&T, which is a minority-serving university.The proposed research aims to investigate the impact of intermodal nonlinearities on quantum entanglement in few-mode and multimode fibers. This project is both significant and innovative in that it will employ intermodal nonlinearities to generate and transmit quantum channels across various spatial modes within such fibers. By employing pumps in two different modes of the fiber, spontaneous four-wave mixing nonlinear effect generates an entangled photon pair each of which are in a different spatial mode traveling in different channels. The project seeks to establish theoretical and experimental platforms to investigate the underlying mechanisms of such intermodal entangled mode generation. These platforms will be utilized to examine the basic processes of such intermodal entanglement in fibers. Subsequent quantum correlation experiments will be performed to characterize the generated photon pairs quantum states. By directly generating entangled photon pairs in fiber, the coupling loss will be eliminated and by the choice of fiber and the pump wavelengths, the Raman scattering noise can be avoided. The primary objective is to improve quantum communication over fiber by utilizing intermodal quantum entanglement in few-mode and multimode fibers and could have a transformative impact on quantum communication and sensing utilizing SDM-compatible fibers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着对安全量子通信系统的需求与光学通信系统的需求不断增长,利用空间划分多路复用(SDM)的电信系统的能力正在扩大实力努力。通过当前的光通信网络或将来的SDM系统传播光量状态可以满足这一需求,并满足安全通信的基本消费者要求。这项研究的总体目的是通过在光纤上生产和传输纠缠的光子来促进这一目标。过去,使用其二阶非线性的散装晶体和波导创建了纠缠的光子对。但是,这种方法会导致纤维耦合造成的额外损失,并且在电信带宽时遭受了低光子的产量。对于各种应用,希望通过光纤纠缠的光子生成和传输。然而,当前的方法构成了几个挑战,包括复杂性,有限的数据生成,对笨重和高功率脉冲激光器的依赖以及引入量子噪声。这项研究建议利用各种几种模式和多模纤维生成一对纠缠光子,这将改善对纠缠属性的控制,并更好地与SDM系统整合。这种方法有望减轻前面提到的挑战。作为研究和教育融合的一部分,从事该项目的研究生将接受非线性光纤和量子激光源的培训。此外,本科生将有机会通过研究学分和暑期实习参与项目的各个阶段,以激发他们对密苏里S&T的光纤研究的兴趣,这是一所少数派服务大学。拟议的研究旨在调查少数型号和多模型的量化非线性对量化量子的影响。该项目既重要又创新,因为它将采用模式非线性来在此类纤维内的各种空间模式上产生和传输量子通道。通过在纤维的两种不同模式中使用泵,自发的四波混合非线性效应会产生一个纠缠的光子对,每个光子对处于不同的空间模式,以不同的通道行进。该项目旨在建立理论和实验平台,以研究这种联运模式生成的基本机制。这些平台将用于检查纤维中这种联运纠缠的基本过程。随后的量子相关实验将进行以表征生成的光子对量子状态。通过直接在纤维中生成纠缠的光子对,将消除耦合损耗,并选择纤维和泵波长,可以避免拉曼散射噪声。主要目的是通过利用几模式和多模纤维中的模式量子纠缠来改善量子沟通,并可能对使用SDM兼容的纤维对量子通信和传感产生变革性的影响。这项奖项反映了NSF的法定任务,并通过使用基金会的智力效果和广泛的影响来评估支持,并通过评估值得评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mina Esmaeelpour其他文献

Displacement measurement using time-stretch microwave photonics with picosecond laser pulses
  • DOI:
    10.1016/j.optlaseng.2024.108762
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Behzad Boroomandisorkhabi;Mina Esmaeelpour
  • 通讯作者:
    Mina Esmaeelpour

Mina Esmaeelpour的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于深度学习算法的近地时空光量子照明与测距研究
  • 批准号:
    12374408
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
量子点光学膜的原位动态高光谱监测与主动学习优化
  • 批准号:
    22305015
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
强化学习最优化绝热量子算法设计
  • 批准号:
    12304555
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习的容错变分量子过程层析方法研究
  • 批准号:
    62301572
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
实验探索基于强化学习优化纠缠的量子热机
  • 批准号:
    12304315
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Using soft X-ray coherent diffraction imaging to study and tailor the formation of superfluid helium droplets and quantum vortices within them
使用软 X 射线相干衍射成像来研究和定制超流氦液滴及其内部量子涡旋的形成
  • 批准号:
    23K28359
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical study on quantum fluid dynamics in micro space
微空间量子流体动力学数值研究
  • 批准号:
    23KJ1832
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Quantum transport study of axion dynamics in magnetic topological systems
磁拓扑系统中轴子动力学的量子输运研究
  • 批准号:
    22KF0111
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cherenkov luminescence mediated excitation of discrete lanthanide optical probes
切伦科夫发光介导的离散镧系元素光学探针的激发
  • 批准号:
    10876727
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
  • 批准号:
    10709399
  • 财政年份:
    2023
  • 资助金额:
    $ 19.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了