Research on Automated Formative Feedback of Problem-Solving Strategy Writing in Introductory Physics using Natural Language Processing

利用自然语言处理的物理导论中解题策略写作的自动形成反馈研究

基本信息

  • 批准号:
    2300645
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Problem solving is an essential 21st century STEM workforce skill, but in most undergraduate introductory STEM courses students use ineffective problem-solving strategies. The pedagogical challenge is that these courses typically have very large enrollments which prohibits instructors' providing of real-time feedback to students on their unproductive strategies, given how labor intensive providing such individualized feedback is. The investigators propose to use natural language processing (NLP) to develop an automated system that will provide personalized formative feedback to students in undergraduate physics courses about their problem-solving strategies. There are two research questions: (1) How accurately can an NLP classifier score such essays and how well can it generalize across types of problems?, and (2) How well does providing students with such feedback improve their problem-solving strategies and actual ability to solve problems? This project leverages existing research in STEM education that has shown that the use of strategy writing, and real-time formative assessment can improve students' problem-solving skills. Starting with a vast corpus of existing data, the investigators will use state-of-the-art supervised and unsupervised learning to train a machine learning algorithm (MLA) to classify strategies articulated by students. Their study will span three phases with increasing generalization, first generalizing over vocabulary used by students to describe their strategies for solving specific problems, then generalizing over sets of isomorphic problems using the same strategies, and finally generalizing over classes of transfer problems that have the same underlying principles but different surface features. Their goal is to determine the accuracy with which an MLA can be trained to provide feedback on short essays written by students describing their strategies for solving a problem. They will also investigate the extent to which real-time formative feedback to students, based on their own strategy essays, can help them to refine their strategies iteratively in order to solve problems with increasing generality. In developing and training their machine learning algorithm, the researchers will implement proven strategies to address issues of fairness in artificial intelligence (AI). The ultimate goal of the project is to transform the development of expert-like problem-solving strategies in STEM undergraduates and thereby potentially to increase their retention in STEM majors.This project is supported by NSF's EDU Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad, and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
解决问题是21世纪必不可少的STEM劳动力技能,但是在大多数本科入门的STEM课程中,学生使用无效的解决问题的策略。教学挑战是,这些课程通常有很大的入学人数,这些入学人数禁止教师向学生提供实时反馈,鉴于劳动密集型提供了这种个性化的反馈意见,因此向学生提供了无效的策略。调查人员建议使用自然语言处理(NLP)开发自动化系统,该系统将为本科物理学课程的学生提供有关解决问题的策略的个性化形成性反馈。有两个研究问题:(1)NLP分类器对这样的论文得分的准确程度如何,以及它可以跨越类型的问题概括?以及(2)为学生提供此类反馈的能力如何改善解决问题的策略和解决问题的实际能力?该项目利用STEM教育中的现有研究表明,使用策略写作和实时形成性评估可以提高学生解决问题的技能。从大量的现有数据开始,研究人员将使用最先进的监督和无监督的学习来培训机器学习算法(MLA),以对学生阐明的策略进行分类。他们的研究将跨越三个阶段,首先将学生用于描述他们解决特定问题的策略,然后使用相同的策略概括了一组同构问题,最后将具有相同基本原理但不同表面特征的转移问题概括为概括。他们的目标是确定可以培训MLA的准确性,以提供有关学生描述解决问题策略的简短文章的反馈。他们还将根据自己的策略论文来研究对学生的实时形成性反馈的程度,可以帮助他们迭代地完善策略,以解决一般性的问题。在开发和培训其机器学习算法时,研究人员将实施验证的策略,以解决人工智能公平性问题(AI)。该项目的最终目标是改变STEM本科生中类似专家的问题解决策略的发展,从而有可能增加其在STEM专业的保留。该项目得到了NSF的EDU核心研究(ECR)计划的支持。 ECR计划强调了基本的STEM教育研究,该研究在该领域产生了基础知识。投资是在重要,广泛且持久的关键领域进行的:STEM学习和STEM学习环境,扩大参与STEM和STEM劳动力发展。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响来通过评估来进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

N. Sanjay Rebello其他文献

Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams
将注意力过程和概念性问题解决联系起来:视觉线索有助于从图表中自动提取相关信息
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Amy Rouinfar;Elise Agra;Adam M. Larson;N. Sanjay Rebello;Lester C. Loschky;Laura E. Thomas;N. Dakota.
  • 通讯作者:
    N. Dakota.
Student and AI responses to physics problems examined through the lenses of sensemaking and mechanistic reasoning
  • DOI:
    10.1016/j.caeai.2024.100318
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Amogh Sirnoorkar;Dean Zollman;James T. Laverty;Alejandra J. Magana;N. Sanjay Rebello;Lynn A. Bryan
  • 通讯作者:
    Lynn A. Bryan

N. Sanjay Rebello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('N. Sanjay Rebello', 18)}}的其他基金

Measuring and Modeling Visual Attention in Online Multimedia Instruction
在线多媒体教学中视觉注意力的测量和建模
  • 批准号:
    2100218
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
FIRE: Exploring Visual Cueing to Facilitate Problem Solving in Physics
FIRE:探索视觉提示以促进物理问题的解决
  • 批准号:
    1138697
  • 财政年份:
    2011
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Investigating Trajectories of Learning & Transfer of Problem Solving Expertise from Mathematics to Physics to Engineering
调查学习轨迹
  • 批准号:
    0816207
  • 财政年份:
    2008
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
Integrating Experimentation and Instrumentation in Upper-Division Physics
高级物理实验与仪器的结合
  • 批准号:
    0736897
  • 财政年份:
    2008
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
PECASE: Research on Students' Mental Models, Learning and Transfer as a Guide to Application-Based Curriculum Development and Instruction in Physics
PECASE:学生心理模型、学习和迁移的研究作为物理应用型课程开发和教学的指南
  • 批准号:
    0133621
  • 财政年份:
    2002
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Continuing Grant
Implementing the Workshop Model and other Research-based Instructional Strategies in Physics & Mathematics Courses
实施研讨会模式和其他基于研究的物理教学策略
  • 批准号:
    9951402
  • 财政年份:
    1999
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant

相似国自然基金

工业自动化与创新的产业外溢:理论与实证
  • 批准号:
    72302245
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
  • 批准号:
    22307058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度学习的三维物体智能化抓取策略及机械手自动化结构设计研究
  • 批准号:
    62302517
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
全自动化运行城市轨道交通乘务计划优化问题研究
  • 批准号:
    72301192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
当机器成为我们的领导:领导职能自动化的内涵、测量及其多层次后果研究
  • 批准号:
    72371260
  • 批准年份:
    2023
  • 资助金额:
    40.00 万元
  • 项目类别:
    面上项目

相似海外基金

Project 1
项目1
  • 批准号:
    10598936
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
New Approach to Deep Learning by Introducing Language Model for Drastic Improvement of Automated Driving Reliability
引入语言模型的深度学习新方法,大幅提高自动驾驶可靠性
  • 批准号:
    21K03985
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing an Early Palliative Care Intervention for Advanced HF Patients
优化晚期心力衰竭患者的早期姑息治疗干预
  • 批准号:
    10821109
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
Can Computer be a Mathematician? Automated Theorem Proving in Undergraduate Mathematics
计算机可以成为数学家吗?
  • 批准号:
    20K11679
  • 财政年份:
    2020
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of instrumentation of nickel-titanium rotary instrument on stress analyzing using automated root canal instrumentation and torque/force analyzing device
镍钛旋转器械的仪器对使用自动根管仪器和扭矩/力分析装置进行应力分析的影响
  • 批准号:
    20K18498
  • 财政年份:
    2020
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了