Modular chemocatalysts for tunable and predictable C-H functionalization
用于可调节和可预测的 C-H 官能化的模块化化学催化剂
基本信息
- 批准号:2247217
- 负责人:
- 金额:$ 50.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis and the Chemical Synthesis Programs in the Division of Chemistry, Professor Jennifer M. Schomaker of the University of Wisconsin is studying the development of new earth abundant and inexpensive catalysts to transform feedstock chemicals from petroleum and biorenewable sources into valuable building blocks for pharmaceuticals, agrochemicals, polymers, and fuels. The carbon-hydrogen (C–H) bond is the most common type of chemical bond in organic compounds and it can be transformed into more valuable bonds, including carbon-nitrogen (C–N) bonds. However, it is challenging to achieve selectivity for a desired reaction at only one specific C–H bond when there are multiple different C–H bonds in a molecule. In this project, Professor Schomaker’s group is expanding the design of low-cost silver catalysts to transform C–H bonds into C–N bonds in high yields and using this knowledge to develop even less expensive catalysts based on the earth abundant metals iron and copper. These catalysts generate less waste, deliver several useful products from a single starting material, and streamline the preparation of selected commercial drugs that contain at least one C–N bond. In terms of broader impacts, Professor Schomaker participates in outreach programs to educate and engage the general public, especially young women, in science. Her studies are aimed at making her laboratory’s research and new catalysts appealing to industry by showing how water can be used as an environmentally sustainable solvent, exploring efficient electrochemical methods to reduce waste streams, and collaborating with industry partners. Graduate and undergraduate students benefit from these broader impacts through exposure to real world applications of their chemistry and by receiving co-mentoring from industrial colleagues.The work being carried out in this project is expected to lead to the development of low-cost, modular catalysts based on silver, iron and copper for the tunable functionalization of C–H bonds to upgraded C–N bonds. To address this issue, Professor Schomaker is pursuing both the fundamental understanding and the practical applications of new catalytic systems able to achieve predictable catalyst control of the chemo-, site-, and stereoselective transformations of C–H bonds to C–N bonds through metal-catalyzed nitrene transfer processes. She also plans to extend the utility of these catalysts to selectively transform C–H bonds into more valuable C–C and C–O bonds. These investigations will combine mechanistic, spectroscopic, and computational studies (density functional theory and higher-level ab initio methods such as CASSCF) to understand how the features of diverse and easily prepared N- and P-donor ligands influence: 1) the electronic structures of the resulting metal nitrenes and carbenes, 2) the dynamic behavior of reactive intermediates, 3) non-covalent interactions between the substrate and catalyst to control site-selectivity of the C–H functionalization, and finally, 4) the ability to develop general, modular, and readily accessible catalysts for enantioselective nitrene transfers. Ultimately, this work aims to establish universal design principles to sustainably facilitate non-directed C–H functionalization that overrides innate reactivity preferences. The scientific broader impacts of this work will be expanded by applying these principles to a diverse range of transition metal-catalyzed C–H bond oxidations. Additional broader impacts include the ability to use non-chlorinated solvents for these transformations, the employment of electrochemical methods to replace stoichiometric oxidants, and the collaboration with industrial partners in targeting late-stage modifications of drug scaffolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
With the support of the Chemical Catalysis and the Chemical Synthesis Programs in the Division of Chemistry, Professor Jennifer M. Schomaker of the University of Wisconsin is studying the development of new earth abundant and inexpensive catalysts to transform feedstock chemicals from petroleum and biorenewable sources into valuable building blocks for pharmaceuticals, agrochemicals, polymers, and fuels.碳 - 氢(C – H)键是有机化合物中最常见的化学键类型,它可以转化为更有价值的键,包括碳氮(C-N)键。但是,当分子中有多个不同的C – H键时,仅在一个特定的C型键处获得所需反应的选择性是挑战。在这个项目中,Schomaker教授的小组正在扩大低成本银色催化剂的设计,以将C – H键转化为高收益率的C – N键,并使用这些知识根据地球丰富的金属铁和铜来开发更便宜的催化剂。这些催化剂产生的废物较少,从单个起始材料中传递了几种有用的产品,并简化了至少包含一种C – N键的选定商业药物的准备。在更广泛的影响方面,乔玛克教授参加了外展计划,以教育和参与公众,尤其是年轻女性的科学。她的研究旨在通过展示如何将水用作环境可持续的解决方案,探索有效的电化学方法来减少废物流以及与行业合作伙伴的合作,从而使她的实验室研究和新的催化剂在行业中显现出来。研究生和本科生通过接触化学的现实世界应用并通过工业同事的同事受益。预计该项目的工作有望导致基于银色,铁和铜的低成本模块化催化剂的发展,以使C-H bongs bongs bongs bongsgraded cobgraded Cy-N Bonds的可调功能。为了解决这个问题,Schomaker教授正在追求能够通过金属催化的氮转移过程来实现C – H键对C-N键对C-N键的化学,现场和立体选择性转换的新型催化系统的基本理解和实际应用。她还计划扩展这些催化剂的效用,以选择性地将C – H债券转化为更有价值的C – C和C – O键。这些研究将结合机械,光谱和计算研究(密度功能理论和更高级别的初始方法,例如CASSCF),以了解潜水员和易于制备的N-和P-Donor配体的特征如何影响:1)1)所得金属硝基和碳纤维的电子结构,2)反应式抗反激体,3),3),3)反应式抗反激体,3)控制C – H功能化的位点选择性,最后4)为对映选择性硝酸烯传输开发一般,模块化和易于访问的催化剂的能力。最终,这项工作旨在建立普遍的设计原则,以可持续支持非导向的C – H功能化,从而覆盖了先天反应性的偏好。这项工作的科学广播影响将通过将这些原理应用于潜水员的过渡金属催化的C – H键氧化范围来扩展。其他广播公司的影响包括对这些转变使用非氯化解决方案的能力,用电化学方法替代石学计量氧化物的使用以及与工业伙伴的合作,以针对药物脚手架的晚期修改,以反映NSF的法定任务,并通过评估范围来诚实地支持了该奖项的诚实范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Schomaker其他文献
Jennifer Schomaker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Schomaker', 18)}}的其他基金
New Multifunctional Bioorthogonal Probes
新型多功能生物正交探针
- 批准号:
2203611 - 财政年份:2022
- 资助金额:
$ 50.29万 - 项目类别:
Continuing Grant
Designer Silver Catalysts for Selective Bond Amidations
用于选择性键酰胺化的设计银催化剂
- 批准号:
1954325 - 财政年份:2020
- 资助金额:
$ 50.29万 - 项目类别:
Standard Grant
Designer Silver Catalysts for Tunable C=C and C-H Bond Amination
用于可调 C=C 和 C-H 键胺化的设计银催化剂
- 批准号:
1664374 - 财政年份:2017
- 资助金额:
$ 50.29万 - 项目类别:
Continuing Grant
CAREER: New Catalysts and Methods for Amine Synthesis via Stereoselective Allene Aziridination
职业:通过立体选择性丙二烯氮丙啶化合成胺的新催化剂和方法
- 批准号:
1254397 - 财政年份:2013
- 资助金额:
$ 50.29万 - 项目类别:
Standard Grant
相似国自然基金
单原子催化剂类酶活性调控的多元化学发光分析体系的构筑
- 批准号:22374143
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
原位拉曼光谱解析单原子催化剂的电化学析氧机制
- 批准号:22302184
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
芯片互连化学镀铜催化剂的制备和机理研究
- 批准号:22372104
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
电解液调控异核双原子催化剂电化学合成尿素研究
- 批准号:22303004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以热—电串联催化机制为导向的电化学析氧催化剂材料的理性设计
- 批准号:22373063
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Integrating Enzymes with Chemocatalysts to Create New Reactions Pathways
将酶与化学催化剂相结合以创建新的反应途径
- 批准号:
426555714 - 财政年份:2019
- 资助金额:
$ 50.29万 - 项目类别:
Research Fellowships