Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals

合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束

基本信息

  • 批准号:
    2246686
  • 负责人:
  • 金额:
    $ 27.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Isotope compositions of deep-earth minerals provide crucial constraints on the earth’s internal structure and chemical evolution. The isotope compositions of deep-earth minerals are controlled by a process named isotope fractionation, in which different isotopes redistribute between different minerals under various pressures and temperatures. There are three conventional ways to constrain equilibrium isotope fractionation in deep-earth minerals, namely theoretical calculation, mass spectroscopy, and nuclear resonance scattering. However, each method has its own challenges. Theoretical calculation is limited by physical approximations used in the model and has to be benchmarked by experiments; mass spectroscopy has difficulty in determining the attainment of equilibrium and is time-consuming; and nuclear resonance scattering can only be applied to the few Mössbauer-active elements. This proposal describes a novel multidisciplinary study on the isotope fractionations of deep-earth minerals that are difficult to be constrained by conventional experimental approaches, through collaborative and synergetic efforts by combining state-of-the-art X-ray spectroscopy with theoretical calculations. The researcher's approach is experimentally benchmarked, time-efficient, directly reflects the equilibrium isotope fractionation, and can be applied to nearly all elements. They aim to answer the following questions with their proposed study: 1) How do the Mössbauer-inactive elements in deep-earth minerals redistribute with pressure, temperature, and crystal structure? 2) How to constrain the fractionation of Mössbauer-inactive elements in deep earth solid solutions efficiently? and 3) How does vibrational anharmonicity affect the isotope fractionation in mantle silicates? The project will support three early to mid-career researchers to continue their research at the University of Hawaii at Maona (Zhang and B. Chen) and Purdue University (M. Chen). Through this project, the team will develop both experimental instruments at a national user facility and open-source codes for computation, and the research suite will be available to domestic and international researchers in earth sciences and beyond. Undergraduate assistants and postdoc scholars will be involved in this project. This project is also committed to establishing the career development pathways for the involved early-career researchers, pushing for the gender and racial equality in geoscience, and broadening the participation in STEM of traditionally underrepresented minorities.The fractionation of the isotopes of constituent elements of mantle minerals at high P-T conditions are considered the ramifications of the differentiation of the Earth, offering crucial clues for the mantle’s composition and chemical evolution. Previous studies on the isotope fractionation of Mössbauer-inactive elements between minerals were either measured using mass spectroscopy in which the attainment of equilibrium requires additional caution, or estimated from theoretical calculations without corroboration from experiments. The researchers have demonstrated that the reduced partition function ratio (β-factor) of tetracoordinated Si can be constrained by theoretical-calculation-calibrated in-situ high-T SXD experiments. In this proposed project, they will extend the method to determine experimentally constrained β-factors of hexacoordinated Si in non-quenchable deep-earth minerals for the first time. They will also tackle challenges to establish an efficient approach to determine β-factors in solid solutions by theoretical calculations, which are to be benchmarked by SXD experiments and thus allows them to investigate the isotope fractionation of hexacoordinated Ti in deep-earth minerals. Their proposed combined approach circumvents direct theoretical modeling of solid solutions, which significantly reduces computational costs. Using the combined approaches of experiments and theoretical modeling, the correction to Si β-factor in hydrous phyllosilicates induced by the vibrational anharmonicity will be investigated. The proposed experimentally benchmarked machine learning framework to establish a highly accurate yet efficient model will allow them to provide reliable estimations of Si β-factor in anharmonic mineral systems. Though they only propose to study select Mössbauer-inactive elements (Si & Ti) in this proposal, the same approach can be extended to other elements such as C, O, Mg, and Ca. All the three proposed tasks will build the foundation for a complete landscape of isotope distribution in mantle minerals, and will enhance understanding of the Earth’s isotopic composition and in turn its chemical evolution. This project is jointly funded by Cooperative Studies of the Earth's Deep Interior (CSEDI) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球深部矿物的同位素组成对地球内部结构和化学演化提供了重要的限制。地球深部矿物的同位素组成受同位素分馏过程控制,在该过程中,不同的同位素在不同的压力和温度下在不同的矿物之间重新分配。约束深部矿物平衡同位素分馏的常规方法有理论计算、质谱和核共振散射三种。理论计算受到模型中使用的物理近似的限制,必须通过实验进行基准测试,难以确定平衡的实现情况,并且核共振散射只能应用于该提案描述了一项关于深部矿物同位素分馏的新颖的多学科研究,这些研究很难受到传统实验方法的限制,通过合作和协同努力。研究人员的方法经过实验基准测试,具有时间效率,直接反映平衡同位素分馏,并且可以应用于几乎所有元素。他们的目标是回答以下问题。他们提出的研究:1) 深层地球矿物中的穆斯堡尔惰性元素如何随压力、温度和晶体结构重新分布?2) 如何限制矿物的分馏?地球深部固溶体中的穆斯堡尔惰性元素是否有效?3)振动非和谐性如何影响地幔硅酸盐中的同位素分馏?该项目将支持三名职业生涯早期到中期的研究人员在夏威夷大学毛纳分校继续他们的研究(张)和 B. Chen)和普渡大学(M. Chen)通过这个项目,该团队将在国家用户设施中开发实验仪器和用于计算的开源代码,并且研究套件将本科生助理和博士后学者将参与该项目,并致力于为参与的早期职业研究人员建立职业发展道路,推动性别和种族问题。地球科学领域的平等,并扩大传统上代表性不足的少数群体对 STEM 的参与。高 P-T 条件下地幔矿物组成元素的同位素分馏被认为是地球分异的后果,为地球分异提供了重要线索。研究人员已经证明,以前对矿物之间穆斯堡尔惰性元素的同位素分馏的研究要么使用质谱法进行测量,其中平衡的实现需要额外的谨慎,要么通过理论计算进行估计,而没有得到实验的证实。四配位 Si 的简化配分函数比(β 因子)可以通过理论计算校准的原位高温 SXD 实验来限制。他们将首次扩展该方法来确定不可淬火深部矿物中六配位硅的实验约束β因子。他们还将解决挑战,建立一种通过理论计算确定固溶体中β因子的有效方法。他们将通过 SXD 实验进行基准测试,从而使他们能够研究深部地球矿物中六配位 Ti 的同位素分馏,他们提出的组合方法规避了固溶体的直接理论建模,这显着。使用实验和理论建模相结合的方法,将研究由振动非谐性引起的水合页硅酸盐中的 Si β 因子的校正,以建立高精度而有效的模型。他们提供了非谐矿物系统中 Si β 因子的可靠估计,尽管他们仅建议研究本提案中选定的穆斯堡尔非活性元素(Si 和 Ti),但相同的方法可以扩展到其他元素,例如。所有三项拟议任务将为地幔矿物同位素分布的完整景观奠定基础,并将增强对地球同位素组成及其化学演化的了解。该奖项由地球深层内部合作研究 (CSEDI) 和刺激竞争性研究既定计划 (EPSCoR) 资助。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Externally Heated Diamond ANvil Cell Experimentation (EH-DANCE) for studying materials and processes under extreme conditions
外部加热金刚石砧室实验 (EH-DANCE),用于研究极端条件下的材料和工艺
  • DOI:
    10.1063/5.0180103
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wang, Siheng;Berrada, Meryem;Chao, Keng-Hsien;Lai, Xiaojing;Zhu, Feng;Zhang, Dongzhou;Chariton, Stella;Prakapenka, Vitali B.;Sinogeikin, Stanislav;Chen, Bin
  • 通讯作者:
    Chen, Bin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongzhou Zhang其他文献

Investigation of the crystal structure of a low water content hydrous olivine to 29.9 GPa: A high-pressure single-crystal X-ray diffraction study
研究低含水量水合橄榄石 (29.9 GPa) 的晶体结构:高压单晶 X 射线衍射研究
  • DOI:
    10.2138/am-2020-7444
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jingui Xu;Dawei Fan;Dongzhou Zhang;Bo Li;Wenge Zhou;Przemyslaw K. Dera
  • 通讯作者:
    Przemyslaw K. Dera
High-Pressure Investigation of 2,4,6-Trinitro-3-bromoanisole (TNBA): Structural Determination and Piezochromism
2,4,6-三硝基-3-溴苯甲醚 (TNBA) 的高压研究:结构测定和压显色
  • DOI:
    10.1021/acs.jpcc.1c08804.s001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Childs;Brad A. Steele;P. Grivickas;Dongzhou Zhang;J. Crowhurst;I;S. Bastea;S. M. Clarke
  • 通讯作者:
    S. M. Clarke
Metastable augite at high pressure andtemperature conditions and its implications for subduction zone dynamics
高压高温条件下的亚稳辉石及其对俯冲带动力学的影响
  • DOI:
    10.2138/am-2017-5959
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Jingui Xu;Dongzhou Zhang;Przemyslaw K. Dera;Bo Zhang;Dawei Fan
  • 通讯作者:
    Dawei Fan
Making a fine-scale ruler for oxide inclusions
制作氧化物夹杂物的细尺
  • DOI:
    10.2138/am-2017-6223
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Dongzhou Zhang
  • 通讯作者:
    Dongzhou Zhang
A large enhancement of ionic conductivity in SrCoO2.5 controlled by isostructural phase transition and negative linear compressibility
由同构相变和负线性压缩率控制的 SrCoO2.5 离子电导率大幅增强
  • DOI:
    10.1063/5.0053978
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Bihan Wang;Nana Li;Yongsheng Zhao;Xuqiang Liu;Mingtao Li;Qian Zhang;Haini Dong;Yu He;Dongzhou Zhang;Yonggang Wang;Gang Liu;Youwen Long;Wenge Yang
  • 通讯作者:
    Wenge Yang

Dongzhou Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
  • 批准号:
    82301240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
  • 批准号:
    2148678
  • 财政年份:
    2023
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 27.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了