CRII: SaTC: Towards Understanding and Defending Against New Waves of Online Hate

CRII:SaTC:理解和防御新一波的网络仇恨

基本信息

  • 批准号:
    2245983
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Rapidly changing world events, such as the COVID-19 pandemic, have been accompanied by significant changes in discourse on social media platforms. Online hate has increased and arrives in waves; it is a deeply concerning problem that is negatively transforming the lives of internet users. Recent studies have demonstrated how online hate violates social media policies and describes the ramifications of these violations in the real world. Online hate is difficult to study scientifically. Sparse and biased samples of hate communications are available for computational analysis, especially when hate communications occur and spread suddenly. This project advances the frontiers of knowledge and our ability to defend against abd mitigate online hate. The project applies novel approaches to study waves of online hate, using new computational approaches to detect online hate policy violations and proposing new methods for moderation on social media platforms.To achieve these goals, the investigation is discovering and cataloging novel factors that characterize new waves of online hate. The categorization process is based on temporal and social measurement analyses of online hate communications. The project also is formulating new techniques to effectively discover linkages in social media streams. The key idea is to efficiently sample online hate datasets such that only samples that characterize new instances or forms of online hate are used for machine-learning training. The machine learning paradigm only needs a few samples to effectively learn to detect the new waves of online hate. The project also uses novel techniques to identify and track cross-platform transfers of online hate in user communities across different social media platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
迅速变化的世界事件,例如COVID-19大流行,伴随着社交媒体平台上的演讲发生重大变化。在线仇恨增加了,并阵阵浪潮。这是一个深切的问题,正在负面改变互联网用户的生活。最近的研究表明,在线仇恨如何违反社交媒体政策,并描述了现实世界中这些侵犯的后果。在线仇恨很难科学学习。稀疏和有偏见的仇恨通信样本可用于计算分析,尤其是在仇恨沟通发生并突然传播时。该项目推动了知识的前沿和我们防御ABD减轻在线仇恨的能力。该项目采用新颖的方法来研究在线仇恨的浪潮,采用新的计算方法来检测在线仇恨政策违规行为,并提出新方法以在社交媒体平台上进行节制。为了实现这些目标,调查正在发现并分类了新的在线仇恨浪潮的新因素。分类过程基于在线仇恨沟通的时间和社会测量分析。该项目还正在制定新技术,以有效地发现社交媒体流中的联系。关键的想法是有效地品尝在线仇恨数据集,以便仅将表征新实例或在线仇恨形式的样本用于机器学习培训。机器学习范式只需要一些样本即可有效学习检测新的在线仇恨浪潮。该项目还使用新颖的技术来识别和跟踪在不同社交媒体平台的用户社区中在线仇恨的跨平台转移。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估评估标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nishant Vishwamitra其他文献

COVID-19 and Sinophobia: Detecting Warning Signs of Radicalization on Twitter and Reddit
COVID-19 和恐华症:检测 Twitter 和 Reddit 上激进化的警告信号
AI-Cybersecurity Education Through Designing AI-based Cyberharassment Detection Lab
通过设计基于人工智能的网络骚扰检测实验室进行人工智能网络安全教育
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ebuka Okpala;Nishant Vishwamitra;Keyan Guo;Song Liao;Long Cheng;Hongxin Hu;Yongkai Wu;Xiaohong Yuan;Jeannette Wade;S. Khorsandroo
  • 通讯作者:
    S. Khorsandroo
Effectiveness and Users’ Experience of Face Blurring as a Privacy Protection for Sharing Photos via Online Social Networks
面部模糊作为在线社交网络共享照片隐私保护的有效性和用户体验
MCDefender: Toward Effective Cyberbullying Defense in Mobile Online Social Networks
MCDefender:在移动在线社交网络中实现有效的网络欺凌防御
Effectiveness and Users' Experience of Obfuscation as a Privacy-Enhancing Technology for Sharing Photos
混淆作为共享照片的隐私增强技术的有效性和用户体验

Nishant Vishwamitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CRII: SaTC: Towards a Secure and Efficient Ethereum P2P Network with Client Diversity
CRII:SaTC:迈向具有客户端多样性的安全高效的以太坊 P2P 网络
  • 批准号:
    2347486
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Understanding the Robustness of Graph Neural Networks against Graph Perturbations
CRII:SaTC:了解图神经网络对抗图扰动的鲁棒性
  • 批准号:
    2241713
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Data-effective and Cost-efficient Security Attack Detections
CRII:SaTC:迈向数据有效且经济高效的安全攻击检测
  • 批准号:
    2245968
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Towards Detecting and Mitigating Vulnerabilities
CRII:SaTC:致力于检测和缓解漏洞
  • 批准号:
    2153474
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: RUI: Towards Trustworthy and Accountable IoT Data Marketplaces
CRII:SaTC:RUI:迈向值得信赖和负责任的物联网数据市场
  • 批准号:
    2153464
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了