Reconfigurable, Reliable, and Secure Quantum Communication Networks
可重构、可靠且安全的量子通信网络
基本信息
- 批准号:2244365
- 负责人:
- 金额:$ 52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The current information era closely relates to the Internet technology with traffic projected to grow exponentially in years to come. Although there are many proposals on how to deal with the upcoming bandwidth capacity crunch, the security of optical networks seems to be almost completely neglected. By taping out the portion of a dense wavelength division multiplexing signal, huge amounts of data can be compromised. Therefore, the security of the future network infrastructure is becoming one of the major issues—to be addressed sooner, rather than later. In this project, the University of Arizona (UA) team will coherently utilize the concepts of cryptography, quantum information theory, and nanophotonics to develop the next generation of quantum-enabled secure communication networks. The proposed project will significantly contribute to the major effort of providing ultimate security for future information infrastructure in the US as well as globally. At the same time, the proposed high-speed, secure, reliable quantum networking approaches will be a framework for cross-disciplinary research in quantum networks, cryptography, quantum information theory, quantum nanophotonics, coding theory, and fiber-optics technologies. This project will advance the quantum information science and technology by formulating a new framework to enable high-rate, robust, and scalable terrestrial quantum communication networks (QCNs) that use novel hybrid continuous variable (CV)-discrete variable (DV) protocols to achieve multiaccess quantum key distribution (QKD). To extend the transmission distance between nodes, the project will pursue postquantum cryptography/covert channel-based error correction, restricted eavesdropping, and hybrid measurement-device-independent (MDI)-QKD concepts. The proposed QCNs will be highly robust against channel impairments, including dispersion effects in fiber links and atmospheric turbulence in free-space optical links. By simultaneously solving the existing problems in both DV- and CV-QKD schemes and advancing towards QCNs, the UA team will develop an innovative concept and framework to attain the ultimate security for future network infrastructure in the US. The project focus is to: 1) develop novel hybrid CV-DV QKD protocols with extremely high secret key rates (SKRs) on the order of 10s of Gb/s; 2) fabricate high-speed integrated transceivers to support the proposed hybrid CV-DV QKD schemes; 3) develop postquantum cryptography/covert channel-based error correction for the hybrid CV-DV QKD, the restricted-eavesdropping concept, and hybrid MDI-QKD to significantly extend achievable transmission distances and increase the SKR; and 4) design quantum networking architectures based on these novel QKD concepts and experimentally demonstrate the proposed QCN concepts in a new terrestrial prototype at UA. The proposed QCNs will be genuinely secured by the fundamental principles of quantum physics, with secret key rates comparable to the classical-communication network data rates. Moreover, the proposed QCNs will provide an unprecedented security level for technologies with major societal and social impacts and benefits, suchas 6G wireless networks, the Internet-of-Things (IoT), and autonomous vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前的信息时代与互联网技术密切相关,预计未来几年流量将呈指数级增长,尽管有许多关于如何应对即将到来的带宽容量紧缩的建议,但光网络的安全性似乎几乎被完全忽视。分出密集波分复用信号的一部分,大量数据可能会受到损害,因此,未来网络基础设施的安全性正在成为该项目中需要尽快解决的主要问题之一。亚利桑那大学 (UA) 团队将连贯地利用该项目将利用密码学、量子信息理论和纳米光子学的概念来开发下一代量子安全通信网络,为美国乃至全球未来的信息基础设施提供终极安全做出重大贡献。同时,所提出的高速、安全、可靠的量子网络方法将成为量子网络、密码学、量子信息论、量子纳米光子学、编码理论和光纤技术等跨学科研究的框架。量子信息科学与技术通过制定新的框架来实现高速率、稳健且可扩展的地面量子通信网络(QCN),该网络使用新颖的混合连续变量(CV)-离散变量(DV)协议来实现多路访问量子密钥分发(QKD)来扩展。节点之间的传输距离,该项目将追求后量子密码学/基于隐蔽通道的纠错、受限窃听和混合测量设备无关(MDI)-QKD 概念。通过同时解决 DV-和 CV-QKD 方案中的现有问题以及向 QCN 迈进,UA 团队将开发一种针对信道损伤的高度鲁棒性,包括光纤链路中的色散效应和自由空间光链路中的大气湍流。创新概念和框架,以实现美国未来网络基础设施的终极安全 该项目重点是:1) 开发具有数十倍左右极高密钥率 (SKR) 的新型混合 CV-DV QKD 协议。 Gb/s;2) 制造高速集成收发器以支持所提出的混合 CV-DV QKD 方案;3) 为混合 CV-DV QKD 开发后量子密码学/基于隐蔽信道的纠错、受限窃听概念,以及混合 MDI-QKD 显着延长可实现的传输距离并增加 SKR;4)基于这些新颖的 QKD 概念设计量子网络架构并通过实验演示所提出的 QCN 概念所提出的 QCN 将真正受到量子物理学基本原理的保护,其密钥速率可与经典通信网络数据速率相媲美。此外,所提出的 QCN 将为技术提供前所未有的安全级别。具有重大社会和社会影响和效益,例如 6G 无线网络、物联网 (IoT) 和自动驾驶汽车。该奖项是 NSF 的法定使命,通过使用基金会的智力优势和评估进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Djordjevic其他文献
Ivan Djordjevic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ivan Djordjevic', 18)}}的其他基金
FET: Small: Spectrally Efficient High-dimensional Quantum Communications in an Integrated Quantum Photonic Platform
FET:小型:集成量子光子平台中的光谱效率高维量子通信
- 批准号:
1907918 - 财政年份:2019
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
CAREER: Enabling Technologies for Beyond 1 Tb/s per Wavelength Optical Transport
职业:实现每波长光传输超过 1 Tb/s 的技术
- 批准号:
0952711 - 财政年份:2010
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
IHCS: Multiplexing, Modulation, Coding and Detection Technologies Enabling Hybrid RF-Optical and Microwave-Optical Communications
IHCS:多路复用、调制、编码和检测技术实现混合射频光和微波光通信
- 批准号:
0725405 - 财政年份:2007
- 资助金额:
$ 52万 - 项目类别:
Standard Grant
相似国自然基金
面向安全性和可靠性的智能汽车定位系统故障测试理论及评价方法研究
- 批准号:52372426
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
面向无人机空地无线网络中组合式攻击下的高可靠安全通信技术研究
- 批准号:62371408
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
面向精准医疗的磁控微机器人可靠驱动与主动安全控制研究
- 批准号:62373168
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于区块链的医疗信息去中心化安全可靠的联邦学习技术的研究
- 批准号:62372092
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于自适应代理模型的山区大跨桥梁风致列车运行安全可靠性高效评估
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: NgOS: Towards Better Operating Systems: Fast, Secure, and Reliable
职业:NgOS:迈向更好的操作系统:快速、安全且可靠
- 批准号:
2239615 - 财政年份:2023
- 资助金额:
$ 52万 - 项目类别:
Continuing Grant
Secure and reliable communication strategies for connected and autonomous vehicles
适用于联网和自动驾驶车辆的安全可靠的通信策略
- 批准号:
RGPIN-2022-03254 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Discovery Grants Program - Individual
Reliable and Secure Data-Sharing Architecture, Situational Awareness and Electrical-failure Modelling for SMRs
可靠、安全的 SMR 数据共享架构、态势感知和电气故障建模
- 批准号:
580480-2022 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Alliance Grants
Secure and Reliable Systems
安全可靠的系统
- 批准号:
CRC-2019-00242 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Canada Research Chairs
Ensuring Secure and Reliable Interactions between Mobile Applications and Cloud Services
确保移动应用程序和云服务之间安全可靠的交互
- 批准号:
RGPIN-2022-03744 - 财政年份:2022
- 资助金额:
$ 52万 - 项目类别:
Discovery Grants Program - Individual