Collaborative Research: SaTC: EDU: Fire and ICE: Raising Security Awareness through Experiential Learning Activities for Building Trustworthy Deep Learning-based Applications
协作研究:SaTC:EDU:火灾和 ICE:通过体验式学习活动提高安全意识,构建值得信赖的基于深度学习的应用程序
基本信息
- 批准号:2244220
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In privacy-sensitive and safety-critical applications, deep learning models are increasingly accepted and utilized. This trend is bound to continue: many open-source frameworks and tools from online code repositories are embedded with deep learning modules. However, many deep learning models contain hidden weaknesses that could be exploited by attacks, posing significant risks to user privacy and safety. It is essential, therefore, to raise security awareness among college students, who are the future data engineering practitioners, and equip them with knowledge and strategies for designing trustworthy, deep learning based applications. This project responds to the urgent need in three critical areas: integrity, confidentiality and equity (ICE). A series of easy-to-implement experiential learning activities concretize learners’ awareness of potential vulnerabilities in deep learning models and enhance their ability to build secure applications of their own. These activities are expressly designed for learners with little prior knowledge, and are streamlined to reduce preparation time and cost for the instructor. The activities’ flexibility maximizes the equitable dissemination of relevant knowledge that is critical to society. The investigators are especially mindful of the needs of minority and socio-economically disadvantaged student populations.A total of twelve learning activity sets address a wide array of issues arising in ICE areas. For data integrity, threats posed by adversarial examples, data poisoning, and backdoor hidden features are tackled. The emphasis on experiential learning allows learners to become acquainted with the process and effects of attacks before learners are equipped with strategies and trained to implement proper defense. To enhance confidentiality, learners first encounter at least two potential sources of privacy leakage, dataset overfitting and abusive querying, and are then taught preventative countermeasures. Both sample biases and algorithmic biases in deep learning models are addressed in the learning activities. Artificial intelligence and deep learning constitute a fast-developing field, and educators must keep pace. The project enriches the supply of educational tools by introducing recent discoveries in the field, including those made by the investigators themselves.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在对隐私敏感和关键安全的应用中,深度学习模型越来越被接受和利用。这种趋势必定会继续:许多来自在线代码存储库中的开源框架和工具都嵌入了深度学习模块。但是,许多深度学习模型都包含可能被攻击利用的隐藏弱点,从而对用户隐私和安全构成了重大风险。因此,至关重要的是要提高未来数据工程从业人员的大学生的安全意识,并为他们提供设计基于可信赖的,深度学习的应用程序的知识和策略。该项目应对三个关键领域的迫切需求:诚信,机密性和公平性(ICE)。一系列易于实现的实验学习活动综合了学习者对深度学习模型中潜在脆弱性的认识,并增强了他们建立自己的安全应用程序的能力。这些活动是为知识知识很少的学习者而明确设计的,并且精简以减少教练的准备时间和成本。这些活动的灵活性最大化了对社会至关重要的相关知识的公平传播。调查人员特别注意少数群体和社会经济处于弱势群体的学生人群的需求。总共十二个学习活动集解决了在冰地区引起的各种问题。为了数据完整性,应对对抗性示例的威胁姿势,数据中毒和后门隐藏特征。对经验丰富的学习的重视使学习者可以通过攻击的过程和影响获得,然后学习者配备策略并接受培训以实施适当的防御。为了增强信心,学习者首先遇到了至少两个潜在的隐私泄漏,数据集过度拟合和虐待查询的来源,然后教会了预防性对策。在学习活动中阐述了深度学习模型中的样本偏见和算法偏见。人工智能和深度学习构成了一个快速发展的领域,教育工作者必须保持步伐。该项目通过介绍该领域的最新发现,包括调查人员本身的最新发现,丰富了教育工具的供应。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估来诚实地支持支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liran Ma其他文献
Nano-Ag-forest based surface enhanced Raman spectroscopy (SERS) of confined acetic acid
基于纳米银森林的受限乙酸表面增强拉曼光谱 (SERS)
- DOI:
10.1016/j.colsurfa.2018.03.036 - 发表时间:
2018-06 - 期刊:
- 影响因子:0
- 作者:
Xu Shen;Ke Han;Liran Ma;Ming Gao;Xuefeng Xu;Jianbin Luo - 通讯作者:
Jianbin Luo
A Low Overhead and Stable Clustering Scheme for Crossroads in VANETs
车载自组网中十字路口低开销、稳定的聚类方案
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yan Huo;Yuejia Liu;Xiaoshuang Xing;Xiuzhen Cheng;Liran Ma;Tao Jing - 通讯作者:
Tao Jing
Spark: A Smart Parking Lot Monitoring System
Spark:智能停车场监控系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
B. Lucas;Liran Ma - 通讯作者:
Liran Ma
Quantum Game Analysis on Extrinsic Incentive Mechanisms for P2P Services(中国计算机学会认定的计算机体系结构领域最高级别的四大A类国际期刊之一,中科院二区期刊,影响因子:5.23)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:5.3
- 作者:
Shengling Wang;Weiman Sun;Liran Ma;Weifeng Lv;Xiuzhen Cheng - 通讯作者:
Xiuzhen Cheng
Ion-specific ice provides a facile approach for reducing ice friction
- DOI:
10.1016/j.jcis.2024.07.015 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Chang Dong;Yuan Liu;Yanan Meng;Shaonan Du;Shicai Zhu;Yu Tian;Liran Ma - 通讯作者:
Liran Ma
Liran Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liran Ma', 18)}}的其他基金
SaTC: EDU: Collaborative: Advancing Cybersecurity Learning Through Inquiry-based Laboratories on a Container-based Virtualization Platform
SaTC:EDU:协作:通过基于容器的虚拟化平台上的探究实验室推进网络安全学习
- 批准号:
1912755 - 财政年份:2019
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
CyberTraining: CIP: Collaborative Research: Enhancing Mobile Security Education by Creating Eureka Experiences
网络培训:CIP:协作研究:通过创建 Eureka 体验加强移动安全教育
- 批准号:
1829553 - 财政年份:2018
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
EAGER: A Social and Context Aware Spectrum Management Framework for Heterogeneous Cognitive Radio Networks
EAGER:异构认知无线电网络的社交和情境感知频谱管理框架
- 批准号:
1352726 - 财政年份:2013
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant