SBIR Phase I: Development of a multi-output machine learning modeling framework for a hybridized perennial cover crop for specialty crop systems
SBIR 第一阶段:为特种作物系统的杂交多年生覆盖作物开发多输出机器学习建模框架
基本信息
- 批准号:2212482
- 负责人:
- 金额:$ 24.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project comes through the development of a prototype software modeling technology and associated monitoring methodology that will be used to transform the value proposition of farm-based practices that improve soil carbon sequestration. The solution enables verification of high-quality carbon offsets, provides feedback regarding important agronomic metrics, and can be applied on a large and geographically expansive scale. Specifically, this prototype is tailored to a novel species of hybridized grass planted as a sustainable, carbon-sequestering cover crop in specialty cropping systems. The solution's agronomic value proposition will enable farming operations to play a part in climate change mitigation while also improving profitability. This innovation will apply to millions of acres of specialty crop farms throughout the country, where cover cropping is currently underutilized despite environmental benefits. The solution will encourage a higher rate of adoption of the practice, lowering strain on farming budgets and natural resources. Additionally, the technology prototype will be applicable to other sustainable, land-based, carbon removal practices, extending its value-added potential to a wide variety of farming practices and circumstances.This SBIR Phase I project seeks to develop a machine-learning based, multi-output modeling software system to quantifying soil carbon sequestration associated with specified farming practices and other important agronomic metrics. The farming practice modeled by this prototype is a hybridized, perennial, cool-season grass planted in specialty cropping systems as a cover crop. Cover cropping is paired with the practice of no-till to enable on-farm soil carbon sequestration, which is quantified by the software modeling prototype for third party verification. Inputs for the models come from a combination of remote and in situ monitored data, such as soil and biomass sample analysis, drone-captured multispectral imagery, and satellite imagery. The quantity and type of model inputs is determined by several factors, including the scalability of monitoring costs, their effect on the accuracy of the models, and the requirements of third-party protocols for verifying soil carbon models. Project tasks include the calibration of the monitoring methodology for new target variables, the addition of plant water status and plant nitrogen status models to a soil carbon model, and the delivery of a functional and scalable prototype capable of generating accurate predictive models of environmental changes attributed to the aforementioned cover crop.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 第一阶段项目的更广泛影响/商业潜力来自原型软件建模技术和相关监测方法的开发,该技术将用于转变基于农场的改善土壤碳实践的价值主张封存。该解决方案能够验证高质量的碳抵消,提供有关重要农艺指标的反馈,并且可以在广阔的地理范围内应用。具体来说,该原型是针对一种新的杂交草品种量身定制的,该草种是在特种种植系统中作为可持续的固碳覆盖作物种植的。该解决方案的农艺价值主张将使农业经营能够在减缓气候变化方面发挥作用,同时提高盈利能力。这项创新将适用于全国数百万英亩的特种作物农场,尽管有环境效益,但覆盖种植目前尚未得到充分利用。该解决方案将鼓励提高这种做法的采用率,减轻农业预算和自然资源的压力。此外,该技术原型将适用于其他可持续的、基于陆地的碳去除实践,将其增值潜力扩展到各种农业实践和环境。该 SBIR 第一阶段项目旨在开发一种基于机器学习的、多输出建模软件系统,用于量化与特定农业实践和其他重要农艺指标相关的土壤碳固存。该原型所模拟的农业实践是在特种种植系统中种植杂交、多年生、冷季草作为覆盖作物。覆盖种植与免耕实践相结合,以实现农场土壤碳封存,并通过软件建模原型进行量化以供第三方验证。模型的输入来自远程和现场监测数据的组合,例如土壤和生物量样本分析、无人机捕获的多光谱图像和卫星图像。模型输入的数量和类型由多个因素决定,包括监测成本的可扩展性、其对模型准确性的影响以及验证土壤碳模型的第三方协议的要求。项目任务包括校准新目标变量的监测方法、将植物水分状况和植物氮状况模型添加到土壤碳模型中,以及交付能够生成准确的环境变化预测模型的功能性和可扩展原型。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sloane Rice其他文献
Sloane Rice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
家庭处境不利青少年非自杀性自伤潜在发展结局预测及分阶段匹配干预研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
闪电先导和回击阶段针状结构发生发展特征差异研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
新发展阶段下相对贫困治理与共同富裕的耦合协同及其驱动机制研究
- 批准号:42271190
- 批准年份:2022
- 资助金额:49 万元
- 项目类别:面上项目
华南前汛期深对流云不同发展阶段云微物理垂直结构的气候特征及演变机制研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
自我-他人区分在心理理解中的作用:青少年阶段的发展及其遗传与认知神经基础
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
相似海外基金
SBIR Phase I: Development of wearable medical device to detect and treat opioid overdose.
SBIR 第一阶段:开发可穿戴医疗设备来检测和治疗阿片类药物过量。
- 批准号:
2335577 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
- 批准号:
2322443 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
- 批准号:
2314685 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Development of a SERS-based diagnostic platform for multiplexing ubiquitous inflammatory markers in cancer.
SBIR 第一阶段:开发基于 SERS 的诊断平台,用于多重癌症中普遍存在的炎症标记物。
- 批准号:
2348543 - 财政年份:2024
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant
SBIR Phase I: Development of novel artificial intelligence (AI)-enabled, non-invasive, heart attack diagnostics
SBIR 第一阶段:开发新型人工智能 (AI) 支持的非侵入性心脏病诊断
- 批准号:
2208248 - 财政年份:2023
- 资助金额:
$ 24.89万 - 项目类别:
Standard Grant