GOALI: Magnetoelectric Nanoparticles As Multi-Field Controlled Devices for Activation of Brain Circuitry

GOALI:磁电纳米粒子作为激活大脑回路的多场控制装置

基本信息

  • 批准号:
    2211082
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Part 1: Non-technical Description:The grant’s main objective is to conduct a basic experimental study to understand the feasibility of using a new class of intelligent materials known as magnetoelectric nanoparticles (MENPs) to create a revolutionary technology for high precision wireless deep brain stimulation. Owing to their quantum-mechanical properties, particularly the magnetoelectric effect, MENPs can serve as nanoscale multimodal hubs capable of combining strengths of different fields, while mitigating their weaknesses, to achieve wireless deep brain stimulation with a sub-mm spatial resolution in real time. To date, such capability has not been made possible by any other stimulation technology. Furthermore, by unlocking such unprecedented technology capabilities, MENPs promise to make significant impacts on two large application areas. First, they will allow to treat neurological disorders and diseases, e.g., Parkinson’s, Autism, Alzheimer’s, Major Depression, and others, as well as deadly brain tumors such as glioblastomas at the molecular level, wirelessly and with control levels never available before. Second, by paving a way to wireless brain-machine interface with a record high spatiotemporal resolution, MENPs will enable a wireless connection between the human and artificial intelligence (AI) with record-high spatial and temporal resolutions, thus allowing to create a powerful tool to understand the computing architecture of the human brain and reciprocally, create leapfrog advances in the state of AI. Part 2: Technical Description:Unlike any other nanoparticles known to date, MENPs display a non-zero magnetoelectric effect and thus offer a multimodal functionality to electrically, and wirelessly, stimulate neural activity of selected local regions across the entire brain with the spatial resolution in the sub-millimeter size range in real time. The functionality is multimodal because the magnetoelectric effect allows to simultaneously use a combination of remotely controlled magnetic fields, focused ultrasound waves or near-infrared light to generate a spatiotemporal pattern of the local electric field to achieve the required high precision stimulation. Owing to the hybrid approach (magnetics-ultrasound or magnetics-near-infrared) this multimodal application allows to enhance strengths of any of these field modes alone while mitigating their disadvantages. Integration of magnetic fields with the ultrasound and near-infrared modes will be comparatively studied to understand the pros and cons of these two hybrid approaches. In both cases, the magnetic field will be used to deliver most of the energy required to stimulate neurons, while the ultrasound wave or near-infrared light will be used as the second low-energy field mode to define the selected local stimulation region. The experiments using core-shell MENPs made of lattice-matched magnetostrictive core, e.g., CoFe2O4 (cobalt ferrite) and piezoelectric shell, e.g., BaTiO3 (barium titanite) will include two parts: (1) nanoprobe measurements to quantify the multimodal energy addition effects and tailor the key core-shell MENPs’ properties and (2) in vitro studies using hippocampus neuronal cell cultures to understand the interaction of the multimodal effects due to activation by multiple effects on neuronal firing (measured via Ca++ imaging). In addition, we will study the effects of different MENPs’ compositions and surface functionalization on the wirelessly controlled firing capabilities. The two hybrid modes, (i) magnetics-ultrasound and (ii) magnetics-near-infrared, respectively, will be comparatively studied from the perspectives of the required energy, the spatial resolution, the depth of penetration, and the penetration through the skull and the brain tissue. To achieve the aforementioned goals, the GOALI team is made of four experienced researchers with cross-disciplinary backgrounds including (i) a nanotechnology expert who co-pioneered MENPs for medical applications, (ii) a neuroscientist, (iii) a photonics innovator, and (iv) an industry co-investigator who is an accomplished signal processing expert and a co-pioneer (with the principal investigator) of MENPs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第 1 部分:非技术描述:该资助的主要目标是进行基础实验研究,以了解使用磁电纳米颗粒 (MENP) 等新型智能材料来创建高精度无线深部脑刺激的革命性技术的可行性由于其量子力学特性,特别是磁电效应,MENPs 可以作为纳米级多模态枢纽,能够结合不同领域的优点,同时减轻它们的弱点,以实现无线深部脑刺激迄今为止,任何其他刺激技术都无法实现这种能力。此外,通过释放这种前所未有的技术能力,MENP 有望对两大应用领域产生重大影响。允许在分子水平上以无线方式治疗神经系统疾病和疾病,例如帕金森氏症、自闭症、阿尔茨海默氏症、重度抑郁症等,以及致命的脑肿瘤,例如胶质母细胞瘤,并且控制水平是前所未有的。 MENP 是一种具有创纪录的高空间和时间分辨率的无线脑机接口方式,它将以创纪录的高空间和时间分辨率实现人类和人工智能 (AI) 之间的无线连接,从而可以创建一个强大的工具来理解人类大脑的计算架构,并反过来在人工智能领域创造跨越式进步 第 2 部分:技术描述:与迄今为止已知的任何其他纳米颗粒不同,MENP 表现出非零磁电效应,从而提供了多模态功能,以亚毫米尺寸范围内的空间分辨率实时以电和无线方式刺激整个大脑选定局部区域的神经活动。该功能是多模态的,因为磁电效应允许同时使用远程组合。受控磁场、聚焦超声波或近红外光产生局部电场的时空模式,以实现所需的高精度刺激。将比较研究磁场与超声波和近红外模式的整合,以了解这两种混合方法的优缺点。在这两种情况下,磁场将用于传递刺激神经元所需的大部分能量。超声波或近红外光将被用作第二低能量场模式来限定所选择的局部刺激区域。使用由晶格匹配磁致伸缩核(例如 CoFe2O4(钴铁氧体))和压电壳(例如 BaTiO3(钛酸钡))制成的核壳 MENP 的实验将包括两个部分:(1)纳米探针测量,以量化多模态能量附加效应并定制关键的核-壳 MENP 的特性,以及 (2) 使用海马神经元细胞培养物进行体外研究,以了解由于神经放电的多重效应激活而产生的多模态效应(通过 Ca++ 成像测量)。此外,我们将研究不同 MENP 的成分和表面功能化对两种混合模式的影响。分别从所需能量、空间分辨率、穿透深度、穿透颅骨和脑组织等角度对磁学-超声和(ii)磁学-近红外进行比较研究,以实现。 GOALI 团队由四位具有跨学科背景、经验丰富的研究人员组成,其中包括 (i) 共同开创 MENP 应用于医疗应用的纳米技术专家、(ii) 神经科学家、(iii) 光子学创新者和 (iv)行业联合研究员,是一位出色的信号处理专家,也是 MENP 的联合创始人(与首席研究员)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sakhrat Khizroev其他文献

One-step fabrication of size-controllable nicotine containing core–shell structures
  • DOI:
    10.1039/c8na00335a
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Jeongmin Hong;Rakesh Guduru;Sakhrat Khizroev;Long You
  • 通讯作者:
    Long You
Deconvolution processing for increasing the resolution of magnetic force microscopy measurements
用于提高磁力显微镜测量分辨率的反卷积处理
  • DOI:
    10.1088/0957-4484/15/10/014
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frank M Candocia;Erik B Svedberg;Dmitri Litvinov;Sakhrat Khizroev
  • 通讯作者:
    Sakhrat Khizroev
A Dual Magnetic Tunnel Junction-Based Neuromorphic Device
基于双磁隧道结的神经形态装置
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Jeongmin Hong;Xin Li;Nuo Xu;Hong Chen;Stefano Cabrini;Sakhrat Khizroev;Jeffrey Bokor;Long You
  • 通讯作者:
    Long You
Shape transformation and self-alignment of Fe-based nanoparticles
  • DOI:
    10.1039/c9na00146h
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Jeongmin Hong;Qiang Luo;Daesung Jung;Soong-Geun Je;Yooseok Kim;Mi-Young Im;Chan-Cuk Hwang;Sakhrat Khizroev;Seungjun Chung;Long You
  • 通讯作者:
    Long You

Sakhrat Khizroev的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sakhrat Khizroev', 18)}}的其他基金

GOALI: Collaborative - Magnetoelectric Nanodevices for Wireless Repair of Neural Circuits Deep in the Brain
GOALI:协作 - 用于无线修复大脑深处神经回路的磁电纳米设备
  • 批准号:
    1935841
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GOALI: Collaborative - Magnetoelectric Nanodevices for Wireless Repair of Neural Circuits Deep in the Brain
GOALI:协作 - 用于无线修复大脑深处神经回路的磁电纳米设备
  • 批准号:
    1810270
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
High-specificity drug uptake using magneto-electric nanoparticles for cancer treatment
使用磁电纳米颗粒进行高特异性药物摄取用于癌症治疗
  • 批准号:
    1408063
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Protein-based Disk Recording
基于蛋白质的磁盘记录
  • 批准号:
    0824019
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Spinstand for Developing Next Generation Data Storage Systems
MRI:用于开发下一代数据存储系统的自旋支架
  • 批准号:
    0421255
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

大尺寸伺服转台用多单元分布式弧线永磁电机设计与性能优化研究
  • 批准号:
    52307049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
轻量化低脉动高可靠直驱式永磁电机系统基础科学问题与关键技术研究
  • 批准号:
    52237002
  • 批准年份:
    2022
  • 资助金额:
    269 万元
  • 项目类别:
    重点项目
电动螺旋桨用桨毂直驱新型盘式对转可变磁通永磁电机的研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
基于交变聚焦磁场的磁电式扭矩-扭振测量机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
电动汽车用高功率密度内置式永磁电机精确解析建模及全局优化设计
  • 批准号:
    52007132
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Investigation of novel photoinduced magnetoelectric effect in magnetic material
磁性材料中新型光感磁电效应的研究
  • 批准号:
    RTI-2023-00177
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Tools and Instruments
Investigation of novel photoinduced magnetoelectric effect in magnetic material
磁性材料中新型光感磁电效应的研究
  • 批准号:
    RTI-2023-00177
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Tools and Instruments
EPITAXY, INTERFACES, AND DOMAIN BOUNDARIES OF ROOM TEMPERATURE MULTIFERROIC MAGNETOELECTRIC FILMS AND HETEROSTRUCTURES
室温多铁性磁电薄膜和异质结构的外延、界面和磁畴边界
  • 批准号:
    RGPIN-2019-07058
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
  • 批准号:
    2213443
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了