Unified Multi-phase Numerical Framework for Understanding Co-Seismic Slope Failures in Complex Sites

用于理解复杂场地同震边坡破坏的统一多相数值框架

基本信息

项目摘要

This research project will focus on advancing the fundamental understanding of the mechanics of slope failures triggered by earthquakes and will help to predict, reduce, and mitigate their destructive consequences. Earthquake-triggered slope failures cause significant economic and life losses in seismically active regions. However, state-of-the-art procedures that address triggering and runout of co-seismic slope failures are highly idealized and do not incorporate the complexities of soil behavior subjected to cyclic loading. This research will develop a validated numerical framework to analyze the overall failure process, from the ground shaking and failure initiation to the post-failure processes. The numerical tool will accommodate large deformations and hydro-mechanical coupling and will be compatible with existing continuum-based constitutive models for the simulation of liquefaction triggering and cyclic mobility. The developed numerical tool and a tutorial manual will be shared through an open-source platform. The research will also be complemented by outreach activities, including lectures for graduate students and training sessions for practitioners. The outcomes of this research can be provide a more comprehensive understanding of the risk associated with earthquake hazards.The goal of this research is to better capture and understand the connection between ground motion characteristics, pore pressure evolution and final mobility of slope failures. Thus, the research objectives of this project include: (i) to establish and validate a generalized numerical framework capable of simulating earthquake loading, site response, and large deformations of complex sites, all within a unified computational framework; (ii) to quantify pore water pressure evolution during the entire instability process; and (iii) to correlate the intensity of the ground motions with the failure initiation, post-failure behavior, and hydro-mechanical response. To accomplish these objectives, the existing Material Point Method framework will be further developed to accurately simulate ground shaking, site response, and large deformations. State-of-practice constitutive models accounting for material damping and cyclic mobility will be considered in the same framework, and their performance will be evaluated. The developments will be validated using existing data from centrifuge testing and field case studies. This project will allow the PI to inform, advance, and transform the way co-seismic slope stability analyses are approached, especially for complex geometries and when critical infrastructure is at risk.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将侧重于增进对地震引发的斜坡破坏力学的基本理解,并将有助于预测、减少和减轻其破坏性后果。地震引发的边坡破坏在地震活跃地区造成重大经济和生命损失。然而,解决同震边坡破坏的触发和跳动的最先进程序是高度理想化的,并且没有考虑到循环荷载作用下土壤行为的复杂性。这项研究将开发一个经过验证的数值框架来分析整个故障过程,从地面震动和故障开始到故障后过程。该数值工具将适应大变形和水力耦合,并将与现有的基于连续体的本构模型兼容,用于模拟液化触发和循环流动。开发的数值工具和教程手册将通过开源平台共享。该研究还将得到外展活动的补充,包括为研究生举办的讲座和为从业人员提供的培训课程。这项研究的成果可以提供对与地震灾害相关的风险的更全面的了解。这项研究的目标是更好地捕捉和理解地震动特征、孔隙压力演化和边坡失稳的最终流动性之间的联系。因此,该项目的研究目标包括:(i)建立并验证一个能够在统一的计算框架内模拟地震荷载、场地响应和复杂场地大变形的通用数值框架; (ii) 量化整个不稳定过程中的孔隙水压力演变; (iii) 将地面运动的强度与失效起始、失效后行为和流体力学响应相关联。为了实现这些目标,现有的质点方法框架将进一步发展,以准确模拟地面震动、场地响应和大变形。将在同一框架中考虑考虑材料阻尼和循环迁移率的实践本构模型,并评估其性能。这些进展将使用离心机测试和现场案例研究的现有数据进行验证。该项目将使 PI 能够告知、推进和改变同震边坡稳定性分析的方法,特别是对于复杂的几何形状和关键基础设施面临风险时。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coseismic site response and slope instability using periodic boundary conditions in the material point method
在质点法中使用周期性边界条件的同震场地响应和边坡失稳
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alba Yerro Colom其他文献

CHARACTERIZING COMPLICATED NEAR-SURFACE GEOLOGIC PROFILES USING NOVEL IN-SITU TESTING AND DATA PROCESSING TECHNIQUES
使用新颖的现场测试和数据处理技术表征复杂的近地表地质剖面
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaleigh M. Yost;R. Green;Alba Yerro Colom;E. Martin
  • 通讯作者:
    E. Martin
The Material Point Method: a promising computational tool in Geotechnics
质点法:岩土工程中一种有前途的计算工具
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alba Yerro Colom;E. Ágreda;Núria Mercè Pinyol Puigmartí
  • 通讯作者:
    Núria Mercè Pinyol Puigmartí
Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method
滑坡体运动大变形分析的趋势,特别强调质点法
  • DOI:
    10.1680/jgeot.15.lm.005
  • 发表时间:
    2016-02-10
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    K. Soga;E. Ágreda;Alba Yerro Colom;K. Kumar;S. B;ara;ara
  • 通讯作者:
    ara
Run-out of landslides in brittle soils: an MPM anlysis
脆性土壤中滑坡的消失:MPM 分析
  • DOI:
    10.1201/b17395-175
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alba Yerro Colom;E. Ágreda;Núria Mercè Pinyol Puigmartí
  • 通讯作者:
    Núria Mercè Pinyol Puigmartí
MPM modelling of landslides in brittle and unsaturated soils
脆性和非饱和土中滑坡的 MPM 建模

Alba Yerro Colom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alba Yerro Colom', 18)}}的其他基金

CAREER: Transformative Understanding of Rainfall-Triggered Landslides with Vegetation Effects from a Climate Change Perspective: Initiation and Consequences
职业:从气候变化的角度对降雨引发的山体滑坡及其植被影响进行变革性的理解:起因和后果
  • 批准号:
    2340657
  • 财政年份:
    2024
  • 资助金额:
    $ 31.01万
  • 项目类别:
    Standard Grant
EAGER: Exploration of an Interdisciplinary Approach to Resolving a Critical Issue in Evaluating Liquefaction Hazard of Challenging Soil Sites
EAGER:探索跨学科方法来解决评估具有挑战性的土壤场地液化危险的关键问题
  • 批准号:
    1937984
  • 财政年份:
    2019
  • 资助金额:
    $ 31.01万
  • 项目类别:
    Standard Grant

相似国自然基金

多阶段多性能非线性退化系统建模与可靠性分析
  • 批准号:
    12361058
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
肺磨玻璃结节演进不同阶段的多模态无创预测模型建立
  • 批准号:
    82370100
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
  • 批准号:
    32371438
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
随机路网环境下基于多阶段和多源数据的应急救援可靠网络设计及优化算法研究
  • 批准号:
    72301236
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
火驱采油不同阶段多环芳烃化合物微观转化机理研究——对改质效果评价新方法的启示
  • 批准号:
    42302161
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neuro-exergaming for the Prevention and Remediation of Decline due to Parkinson's Disease: Clinical Trial of the Interactive Physical and Cognitive Exercise System (iPACES v3)
用于预防和治疗帕金森病导致的衰退的神经运动游戏:交互式身体和认知运动系统 (iPACES v3) 的临床试验
  • 批准号:
    10698250
  • 财政年份:
    2023
  • 资助金额:
    $ 31.01万
  • 项目类别:
Neuro-exergaming for the Prevention and Remediation of Decline due to Parkinson's Disease: Clinical Trial of the Interactive Physical and Cognitive Exercise System (iPACES v3)
用于预防和治疗帕金森病导致的衰退的神经运动游戏:交互式身体和认知运动系统 (iPACES v3) 的临床试验
  • 批准号:
    10698250
  • 财政年份:
    2023
  • 资助金额:
    $ 31.01万
  • 项目类别:
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
  • 批准号:
    10729965
  • 财政年份:
    2023
  • 资助金额:
    $ 31.01万
  • 项目类别:
Development of a unified chain of phase field theories for multi--scale modelling of solidification microstructure evolution
开发用于凝固微观结构演化多尺度建模的统一相场理论链
  • 批准号:
    RGPIN-2018-05818
  • 财政年份:
    2022
  • 资助金额:
    $ 31.01万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a unified chain of phase field theories for multi--scale modelling of solidification microstructure evolution
开发用于凝固微观结构演化多尺度建模的统一相场理论链
  • 批准号:
    RGPIN-2018-05818
  • 财政年份:
    2022
  • 资助金额:
    $ 31.01万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了