Methodology for Qualitative Constraints in Semi-Parametric Models
半参数模型中的定性约束方法
基本信息
- 批准号:2210662
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Qualitative constraints such as concavity (law of diminishing returns) are ubiquitous in social sciences and economics. In order to incorporate these important constraints into statistical modeling, users often resort to simpler models, for example, linear regression. However, these simpler models are inflexible and cannot fully explain complex scientific phenomena. In turn, semi-parametric models provide necessary flexibility and interpretability. However, in fitting these semi-parametric models, qualitative constraints are often left unexploited. Ignoring these constraints, will not only lead to a loss in interpretability but also forgo some accuracy in the performance of the estimates. The broad goal of this proposal is to develop new statistical methods that respect subject matter qualitative constraints and make such methods more accessible to researchers via open-source software implementation.This project has three main aims: (1) to develop general non-parametric regression estimators that account for available subject matter constraints and adapt to the smoothness of the underlying truth; (2) to explore systematic approaches for semi-parametric estimators that incorporate naturally occurring shape constraints on the nuisance components; and (3) to assess improved doubly robust estimators of functionals that can be represented in terms of variationally dependent nuisance parameters, whose relationship is shape-constrained on a subject matter basis. This in return would allow for significant improvement of estimation accuracy, thereby outperforming the existing tools that do not incorporate such information. The results of the project will find utility in addressing the interpretability and reproducibility concerns that have recently emerged in a broad range of domain knowledge disciplines, from social sciences to economics to epidemiology. The project will offer a multitude of opportunities for research training and professional development of the next generation of statisticians and will also engage in bolstering diversity in statistical sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
凹性(收益递减法则)等定性约束在社会科学和经济学中普遍存在。为了将这些重要的约束纳入统计建模中,用户通常求助于更简单的模型,例如线性回归。然而,这些较简单的模型缺乏灵活性,无法完全解释复杂的科学现象。反过来,半参数模型提供了必要的灵活性和可解释性。然而,在拟合这些半参数模型时,定性约束常常未被利用。忽略这些约束不仅会导致可解释性的损失,而且还会放弃估计性能的一些准确性。该提案的总体目标是开发新的统计方法,尊重主题定性约束,并通过开源软件实现使研究人员更容易使用这些方法。该项目有三个主要目标:(1)开发通用非参数回归估计器考虑可用的主题约束并适应潜在事实的平滑性; (2) 探索半参数估计器的系统方法,将自然发生的形状约束纳入干扰成分; (3) 评估改进的双稳健泛函估计量,该估计量可以用变分相关的干扰参数来表示,其关系在主题基础上受到形状约束。作为回报,这将显着提高估计准确性,从而优于不包含此类信息的现有工具。该项目的结果将有助于解决最近在从社会科学到经济学到流行病学的广泛领域知识学科中出现的可解释性和可重复性问题。该项目将为下一代统计学家的研究培训和专业发展提供大量机会,还将致力于促进统计科学的多样性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arun Kuchibhotla其他文献
Arun Kuchibhotla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arun Kuchibhotla', 18)}}的其他基金
Central Limit Theorems and Inference in High Dimensions
高维中心极限定理和推理
- 批准号:
2113611 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
多约束条件下多飞行器鲁棒协同制导与控制方法研究
- 批准号:11502019
- 批准年份:2015
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于稳定性约束条件的空间电源功率密度优化方法
- 批准号:51247009
- 批准年份:2012
- 资助金额:15.0 万元
- 项目类别:专项基金项目
有约束的航天器高精度快速姿态跟踪动力学与控制特性研究
- 批准号:11172036
- 批准年份:2011
- 资助金额:68.0 万元
- 项目类别:面上项目
故障特征基于多源信息和约束条件的多尺度诊断方法
- 批准号:60801048
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
约束条件下的形状记忆特性及铜基合金热稳定性研究
- 批准号:59331021
- 批准年份:1993
- 资助金额:20.0 万元
- 项目类别:重点项目
相似海外基金
Micro triage decisions and moral distress during the COVID - 19 pandemic in critical care providers: A cross-provincial case study
COVID-19 大流行期间重症监护提供者的微观分诊决策和道德困扰:跨省案例研究
- 批准号:
486148 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Studentship Programs
Basis for Cognitive Constraints in Rational Inattention Model
理性注意力不集中模型中认知约束的基础
- 批准号:
22K01395 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Investigation into Cross-Domain Constraints on Copula Distribution from a Dynamic Perspective
动态视角下Copula分布的跨域约束研究
- 批准号:
19K00683 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Investigation into Cross-Domain Constraints on Copula Distribution from a Dynamic Perspective
动态视角下Copula分布的跨域约束研究
- 批准号:
19K00683 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on well-posedness for quasilinear partial differential equations with constraints
带约束的拟线性偏微分方程的适定性研究
- 批准号:
17K05294 - 财政年份:2017
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)