Collaborative Research: Understanding Sulfur-Carbon-Solid Electrolyte Interface of Lithium/Sulfur Solid-State Batteries

合作研究:了解锂/硫固态电池的硫-碳-固体电解质界面

基本信息

  • 批准号:
    2241007
  • 负责人:
  • 金额:
    $ 40.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

In recent years, there has been a significant movement towards using electric vehicles (EVs) as a more sustainable form of transportation. Continuous innovation of rechargeable batteries that supply power to an electric motor is required to boost the adoption of EVs since the battery significantly affects the driving range, safety, and cost of EVs. A lithium/sulfur (Li/S) battery consisting of a lithium metal anode and sulfur cathode is a promising candidate for EV applications as it has the potential for a five-times longer driving distance at a given weight of the EV battery compared to conventional lithium-ion batteries. The major challenges towards the development of reliable and safe Li/S batteries are 1) the need to mitigate problematic issues associated with chemical compounds called lithium polysulfides, which are formed in the organic liquid electrolyte during battery operation, and 2) the flammable ionic conductor used as electrolyte. A Li/S solid-state battery is a promising system for overcoming these issues because it uses a solid-state electrolyte which is non-flammable and can prevent polysulfide formation better than liquid electrolytes. However Li/S solid-state batteries suffer from poor energy storage/delivery performance due to an insufficient understanding of the electrode-solid electrolyte interface. This project will conduct fundamental studies on the interfaces in Li/S solid-state batteries, advanced materials characterization methods, and implement rational electrode design to address these challenges. The results from this project will create new knowledge that can enable energy storage solutions to meet the U.S.’s mission toward decarbonizing the global automotive sector and shaping the sustainable energy future. Comprehensive education and workforce development plans are laid out through a seamless partnership between Arizona State University and the University of Michigan Ann Arbor. Training graduate and undergraduate students via this research project will significantly contribute to the mission of both universities mission to become a hotbed of energy technologies.The overarching goal of this project is to improve the understanding of the electrochemical processes taking place in Li/S composite cathodes employing garnet-type lithium lanthanum zirconium oxide (Li7La3Zr2O12, LLZO) as a solid electrolyte. The research will focus on: 1) Obtaining an improved understanding of the reaction mechanisms in Li/S composite cathodes using model systems, electroanalytical techniques, and in operando/ex-situ X-ray analyses, 2) Elucidation of fundamental thermodynamic and kinetic parameters influential in the electrochemical processes of sulfur, and 3) Investigation of design parameters such as particle size, morphology, surface properties, and mass loading of components in the sulfur/solid state electrolyte composite cathode. Enabled by the collaborative research team’s expertise in Li/S cell chemistry, solid-state battery technology, and synchrotron-based in-situ/operando characterization, this project will result in a comprehensive methodology for investigating and designing sustainable, next-generation energy storage systems. The results of the project will lead to the innovative design of S-LLZO composite cathodes, which is favorable for fast and sustainable electrochemical processes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,将电动汽车(EV)作为一种更可持续的运输形式进行了重大运动。需要对电动机供电的可充电电池进行连续创新,以增强电动汽车的采用,因为电池会显着影响电动汽车的驾驶范围,安全性和成本。由锂金属阳极和硫阴极组成的锂/硫(LI/S)电池是EV应用的有望候选者,因为与常规锂离子电池相比,它具有在给定重量的EV电池的五倍更长的驾驶距离。可靠且安全的LI/S电池开发面临的主要挑战是1)需要减轻与称为锂多硫化锂的化合物相关的有问题的问题,这些化合物在电池操作过程中是在有机液体电解质中形成的,以及2)2)用作电解质的易燃离子导体。电池是克服这些问题的承诺系统,因为它使用了固态电解质,该固态电解质不易用,并且可以比液体电解质更好地防止多硫化物形成。但是,由于对电极 - 固定电解质界面的了解不足,LI/S固态电池的能量存储/输送性能不佳。该项目将对LI/S固态电池的界面,高级材料表征方法进行基础研究,并实施有理电极设计以应对这些挑战。该项目的结果将创造新的知识,使能源储能解决方案能够实现美国的使命,以脱碳化全球汽车行业并塑造可持续的能源未来。通过亚利桑那州立大学和密歇根大学安阿伯大学之间的无缝伙伴关系制定了综合教育和劳动力发展计划。通过该研究项目培训毕业生和本科生将为两所大学的使命做出重大贡献,成为能量技术的温床。该项目的总体目标是提高对利用石榴石型lithem lith lithium linthanum parnum linthanum pimirconium circironium acircironium acircironium acirtoly as soloi consery(li7lala12O12O12O12O12O12O12O),以提高对在Li/S复合托管中进行的电化学过程的理解。这项研究将重点介绍:1)使用模型系统,电分析技术以及在操作/EX-Situ X射线分析中获得对LI/S综合大管中的反应机制的了解,2)阐明基本热力学和动力学参数在电流过程中的基本热力学和动力学参数的影响,以及3),以及3)的构图,以及3),以及3),以及3)的研究,以及3)的设计。硫/固态电解质复合阴极中成分的特性和质量负载。由协作研究团队在LI/S细胞化学,固态电池技术和基于同步加速器的基于原位/Operando表征方面的专业知识启用,该项目将为调查和设计可持续的下一代储能系统提供全面的方法。该项目的结果将导致S-Llzo复合阴极的创新设计,该设计有利于快速,可持续的电化学过程。该奖项反映了NSF的法定任务,并且我们是否使用基金会的知识分子优点和更广泛的影响审查标准来评估我们的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoon Hwa其他文献

Yoon Hwa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于场景理解的全景视频智能压缩关键技术研究
  • 批准号:
    62371310
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
面向智能视频理解的时序结构化解析与语义细致化识别研究
  • 批准号:
    62306239
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多粒度跨模态信息驱动融合的意图理解及其情感机器人场景应用研究
  • 批准号:
    62373334
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
复杂场景下的视频内容增强与理解研究
  • 批准号:
    62372036
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 40.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 40.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
  • 批准号:
    2318940
  • 财政年份:
    2024
  • 资助金额:
    $ 40.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 40.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
  • 批准号:
    2331729
  • 财政年份:
    2024
  • 资助金额:
    $ 40.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了