ERASE PFAS: Mechanistic Investigation of PFAS Degradation using Powder Activated Carbon and Persulfate at Ambient Temperature

ERASE PFAS:环境温度下使用粉末活性炭和过硫酸盐降解 PFAS 的机理研究

基本信息

项目摘要

The manufacturing, utilization, and disposal of perfluoroalkyl substances (PFAS) has caused widespread environmental contamination in the United States. PFAS are commonly referred to as “forever chemicals” due to their persistence, stability, and resistance to natural environmental degradation processes. In addition, PFAS tend to bioaccumulate in the human body, and mounting evidence suggests that several serious health outcomes are associated with PFAS exposure, including reduced vaccine response, increased cholesterol levels, and pregnancy complications. During the last two decades, PFAS have been increasingly detected in groundwater aquifers which serve as sources of drinking water for many communities throughout the United States. However, the treatment of PFAS contaminated groundwater can be expensive due to the extensive infrastructure and energy required to remove and destroy PFAS. The overarching goal of this project is to investigate the underlying science and engineering to advance the development and deployment of a promising low-energy and low-temperature treatment process that utilizes persulfate (PS), followed by activation with powdered activated carbon (PAC), to capture and destroy PFAS from contaminated groundwater. The successful completion of this project will benefit society through the generation of fundamental knowledge that will advance the utilization of persulfate and PAC as a cost-effective destruction technology for the treatment and remediation of PFAS contaminated groundwater. Additional benefits to society will be accomplished through education and training activities including the mentoring of one graduate student and one undergraduate student at the University of Michigan.Widespread use of PFAS in commercial products, manufacturing, and fire-fighting response has led to the contamination of soils and groundwater throughout the United States. Due to the high strength of the carbon-fluorine bond, most PFAS do not undergo natural attenuation reactions in environmental media such as biodegradation, photo-oxidation, photolysis, and hydrolysis. As a result, treatment of PFAS contaminated aquifers often requires pumping contaminated groundwater from the subsurface followed by above ground removal and disposal, which requires extensive infrastructure and/or substantial energy inputs. Few treatment technologies efficiently destroy PFAS in situ, especially at ambient temperatures. The goal of this project is to design, evaluate, and optimize a low energy and low temperature process for in situ PFAS capture and destruction from contaminated groundwater using persulfate (PS) and powdered activated carbon (PAC). The specific objectives of the research are to (1) evaluate the reaction kinetics for a homologous series of PFAS contaminants with a range of functional groups using the PS/PAC treatment process; (2) elucidate the underlying reaction mechanisms and the role of radical species in PFAS transformation and destruction during PS/PAC treatment; and (3) assess the effectiveness of the PS/PAC treatment to treat and remediate PFAS contaminated groundwater using flow-through column studies. The successful completion of this project has the potential for transformative impact through the generation of fundamental knowledge that will advance the utilization of persulfate and powdered activated carbon as an efficient and cost-effective destruction technology for in situ treatment of PFAS-impacted groundwater. To implement the educational and outreach goals of this project, the Principal Investigator (PI) plans to recruit and mentor students from underrepresented backgrounds to work on the proposed research. In addition, the PI will develop an interactive instructional module, “Understanding PFAS and Exposure Prevention,” for K-12 students to present in communities where PFAS has been detected in drinking water.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全氟烷基物质(PFA)的制造,利用和处置在美国引起了宽度的环境污染。 PFA通常被称为“永远的化学物质”,因为它们的持久性,稳定性和对自然环境退化过程的抵抗力。此外,PFA倾向于在人体中生物弥补,并且越来越多的证据表明,几种严重的健康结果与PFAS暴露有关,包括疫苗反应降低,胆固醇水平升高和妊娠并发症。在过去的二十年中,在地下水含水层中越来越多地发现了PFA,这些含水层是美国许多社区的饮用水来源。但是,由于拆除和破坏PFA所需的广泛基础设施和能量,对PFA污染的地下水的处理可能很昂贵。该项目的总体目标是调查潜在的科学和工程,以推动利用过(PS硫酸盐(PS))的低能量和低温治疗过程的发展和部署,然后用粉末状的活性炭(PAC)激活,从而从污染的地下水中捕获和破坏PFA。该项目的成功完成将通过产生基本知识来使社会受益,这将推动过人硫酸盐和PAC作为一种具有成本效益的破坏技术,用于治疗和修复PFAS受污染的地下水。将通过教育和培训活动来实现社会的额外好处,包括对密歇根大学的一名学生和一名本科生的心理。由于碳氟键的高强度,大多数PFA都不在环境培养基(例如生物降解,光氧化,光解和水解)的自然衰减反应下。结果,对PFA污染的含水层的处理通常需要从地下泵送受污染的地下水,然后进行地面去除和处置,这需要广泛的基础设施和/或大量的能量输入。很少有治疗技术有效地破坏原位PFA,尤其是在环境温度下。该项目的目的是使用过硫酸盐(PS)(PS)和粉末状的活性炭(PAC)设计,评估和优化对原位PFA捕获和破坏原位PFA的低温和低温过程。该研究的具体目标是(1)使用PS/PAC处理过程评估具有一系列官能团的同源PFA污染物的反应动力学; (2)阐明了基本的反应机制以及自由基在PS/PAC治疗过程中PFAS转化和破坏中的作用; (3)评估PS/PAC处理使用流通柱研究的PS/PAC处理对PFA污染的地下水的有效性。该项目的成功完成通过基本知识的产生具有变革性影响的潜力,这些知识将推动使用过硫酸盐和粉末状的活性炭作为一种有效且具有成本效益的破坏技术,用于原位治疗PFAS受影响的地下水。为了实施该项目的教育和外展目标,首席研究员(PI)计划招募和指导来自代表性不足的背景的学生,从事拟议的研究。此外,PI将开发一个交互式的教学模块,“了解PFA和暴露预防”,供K-12学生在饮用水中发现PFA的社区中呈现。这项奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的评估审查审查的标准来通过评估来获得的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katherine Manz其他文献

Pregnancy-dependent neuroimmune and endocrine effects of endocrine disrupting chemicals (EDCs): Implications for maternal health and fetal development
  • DOI:
    10.1016/j.ntt.2023.107251
  • 发表时间:
    2023-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marissa Sobolewski;Alyssa Merrill;Erin Murray;Kevin Welle;Elena Marvin;Katherine Manz
  • 通讯作者:
    Katherine Manz

Katherine Manz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

饮用水膜处理系统服役中PFAS释放规律及去除机理研究
  • 批准号:
    52370137
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
污泥深度脱水中PFAS转化调控与EPS指纹的响应关联机制
  • 批准号:
    42307520
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
  • 批准号:
    42307065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
  • 批准号:
    22366033
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
单原子Pd@MXene穿透式电极电催化还原PFAS性能与界面活性位点调控原理
  • 批准号:
    52370084
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
  • 批准号:
    2338480
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
農地への有機フッ素化合物(PFAS)輸送経路と農地における動態の解明
阐明有机氟化合物(PFAS)向农田的迁移途径和农田动态
  • 批准号:
    23K27024
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simply forever: Tackling PFAS complexity through mode of action assignment
永远简单:通过行动模式分配解决 PFAS 复杂性
  • 批准号:
    NE/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
生体汚染レベルの有機フッ素化合物(PFAS)による生体恒常性かく乱作用の解明
阐明有机氟化合物 (PFAS) 在生物污染水平下的稳态破坏作用
  • 批准号:
    24K15309
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
フッ素その場無機化による環境負荷低減型PFAS処理プロセスの開発
开发 PFAS 处理工艺,通过氟原位矿化减少对环境的影响
  • 批准号:
    24K15362
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了