Collaborative Research: Frameworks: Interoperable High-Performance Classical, Machine Learning and Quantum Free Energy Methods in AMBER
合作研究:框架:AMBER 中可互操作的高性能经典、机器学习和量子自由能方法
基本信息
- 批准号:2209717
- 负责人:
- 金额:$ 226.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the Office of Advanced Infrastructure and the Division of Chemistry at NSF, Professor Merz and his group will work on molecular simulation cyberinfrastructure. Molecular simulations have become an invaluable tool for research and technology development in chemical, pharmaceutical, and materials sciences. With the availability of specialized hardware such as graphics processing units (GPUs), molecular dynamics simulations using classical or molecular mechanical force fields have reached the spatial and temporal scales needed to address important real-world problems in the chemical and biological sciences. Free energy simulations are a particularly important and challenging class of molecular simulations that are critical to gain a predictive understanding of chemical processes. For example, free energy methods can predict the barrier height and rates for chemical reactions, whether a reaction will occur, or how tightly a drug binds to a target. These predictions are extremely valuable for the design of new catalytic agents or drugs. However, the predictive capability of free energy simulations is sensitive to the underlying model that describes the inter-atomic potential energy and forces. Accurate free energy simulations of chemical processes require potential energy models that capture the essential physics and can respond to changes in the chemical environment, but conventional force field models are unsuitable for many processes involving bond breaking and formation as seen, for example, in catalyst design. Consequently, there is great need to extend the scope of free energy methods by enabling the use of a broader range of potential energy models that are more accurate as well as reactive and/or capable of quantum mechanical many-body polarization and charge transfer. The cyberinfrastructure created by this project allows for the routine application of free energy methods, using quantum mechanics, machine learning, reactive and classical potentials to a myriad of important problems that advance the state-of-the art in the biological and chemical sciences. The tools can be applied by a range of scientists to address fundamental problems of national interest, for example, in the design of drugs against zoonotic diseases (e.g., COVID-19), the design of materials with novel functions and in the design of improved batteries. Given the sophistication of the methods employed, education of a diverse pool of chemical, biological and computer scientists to advance this field is essential and is addressed in this project, thereby training the next generation of computational scientists that will form the backbone of the work force of the future. The project develops accurate and efficient free energy software within a powerful new multiscale modeling framework in the AMBER suite of programs for applications in chemistry, biology, and materials science. The multiscale framework enables the design and use of new classes of mixed-method force fields that involve interoperability between several existing and emerging reactive, machine learning and quantum many-body potentials. These potentials have enhanced accuracy, robustness, and predictive capability compared to classical molecular mechanical force fields and enable the study of chemical reactions and catalysis. The cyberinfrastructure supports innovative multi-layered hybrid potentials that can be customized to meet the needs of complex applications in biotechnology development, enzyme design and drug discovery. A robust endpoint "book-ending" approach that leverages the GPU-accelerated capability of the AMBER molecular dynamics engine is used to reach these goals. Specifically, the open-source high-performance software for free energy simulations is designed for multi-layered hybrid potentials using combinations of linear-scaling many-body quantum mechanical methods via the GPU-accelerated QUICK package, scalable reactive ReaxFF force fields via the PuReMD package, as well as the recently developed DeepMD-SE, ANAKIN-ME (ANI) and AP-Net families of machine learning potentials. The cyberinfrastructure is built upon the existing high-performance CUDA MD engine in AMBER and extends it to a broad range of GPU-accelerated architectures using industry-standard programming models. Scalability is ensured using innovative parallel algorithms. High impact is achieved by leveraging AMBER's broad user base to expand the scope and success of FE applications. In this way, the project leverages existing recognized capabilities and actively engages a diverse team of collaborators and the broader molecular simulations community. The cyberinfrastructure delivered by the project enables a wide range of new and enhanced applications for a broad community of users in academia, industry, and national laboratories. These applications include drug discovery, enzyme catalysis, and biomaterials design. The AMBER suite of programs has a long-standing extensive worldwide userbase, and is widely used on national production cyberinfrastructure. The enhancement of AMBER as an established, proven sustainable, and widely used package will ensure that the software has a broad impact well beyond the end of the project. The project will also train a diverse population of students and researchers in theory, programming, computational chemistry/biology, computer science, scientific writing, and communication.This award by the Office of Advanced Cyberinfrastructure is jointly supported by the Division of Chemistry within the NSF Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国国家科学基金会高级基础设施办公室和化学部的支持下,默茨教授和他的团队将致力于分子模拟网络基础设施。分子模拟已成为化学、制药和材料科学领域研究和技术开发的宝贵工具。随着图形处理单元 (GPU) 等专用硬件的出现,使用经典或分子机械力场的分子动力学模拟已经达到了解决化学和生物科学中重要的现实问题所需的空间和时间尺度。自由能模拟是一类特别重要且具有挑战性的分子模拟,对于获得对化学过程的预测性理解至关重要。例如,自由能方法可以预测化学反应的势垒高度和速率、是否会发生反应,或者药物与靶标结合的紧密程度。这些预测对于新催化剂或药物的设计非常有价值。然而,自由能模拟的预测能力对描述原子间势能和力的基础模型很敏感。化学过程的精确自由能模拟需要势能模型来捕获基本物理原理并能够响应化学环境的变化,但传统的力场模型不适合许多涉及键断裂和形成的过程,例如在催化剂设计中。因此,非常需要通过使用更广泛的势能模型来扩展自由能方法的范围,这些势能模型更准确、反应性和/或能够进行量子力学多体极化和电荷转移。该项目创建的网络基础设施允许常规应用自由能方法,利用量子力学、机器学习、反应势和经典势来解决无数重要问题,从而推动生物和化学科学的最先进水平。许多科学家可以应用这些工具来解决国家利益的基本问题,例如,设计针对人畜共患疾病(例如,COVID-19)的药物、设计具有新功能的材料以及设计改进的材料。电池。鉴于所采用方法的复杂性,对化学、生物和计算机科学家进行多样化的教育以推动这一领域的发展至关重要,并且在本项目中得到解决,从而培训下一代计算科学家,他们将成为劳动力的支柱未来的。该项目在 AMBER 程序套件中强大的新型多尺度建模框架内开发准确、高效的自由能源软件,用于化学、生物学和材料科学领域的应用。多尺度框架使得能够设计和使用新型混合方法力场,其中涉及几种现有和新兴反应、机器学习和量子多体势之间的互操作性。与经典分子机械力场相比,这些势具有增强的准确性、鲁棒性和预测能力,并使得化学反应和催化的研究成为可能。网络基础设施支持创新的多层混合潜力,可以进行定制以满足生物技术开发、酶设计和药物发现中复杂应用的需求。 利用 AMBER 分子动力学引擎的 GPU 加速功能的强大端点“书尾”方法可用于实现这些目标。 具体来说,用于自由能模拟的开源高性能软件专为多层混合势而设计,通过 GPU 加速的 QUICK 包使用线性缩放多体量子力学方法的组合,通过 PuReMD 的可扩展反应 ReaxFF 力场包,以及最近开发的 DeepMD-SE、ANAKIN-ME (ANI) 和 AP-Net 系列机器学习潜力。该网络基础设施建立在 AMBER 中现有的高性能 CUDA MD 引擎之上,并使用行业标准编程模型将其扩展到广泛的 GPU 加速架构。使用创新的并行算法确保可扩展性。通过利用 AMBER 广泛的用户群扩大 FE 应用程序的范围和成功,可以实现巨大的影响。通过这种方式,该项目利用现有的公认能力,并积极吸引多元化的合作者团队和更广泛的分子模拟社区。该项目提供的网络基础设施为学术界、工业界和国家实验室的广大用户群体提供了广泛的新的和增强的应用程序。这些应用包括药物发现、酶催化和生物材料设计。 AMBER 程序套件在全球范围内拥有长期广泛的用户群,并广泛用于国家生产网络基础设施。 AMBER 作为一个成熟的、经过验证的可持续且广泛使用的软件包的增强将确保该软件在项目结束后仍具有广泛的影响。该项目还将在理论、编程、计算化学/生物学、计算机科学、科学写作和传播方面培训各类学生和研究人员。该奖项由先进网络基础设施办公室颁发,并得到美国国家科学基金会化学部的共同支持数学和物理科学理事会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
End-to-End Differentiable Reactive Molecular Dynamics Simulations Using JAX
使用 JAX 进行端到端可微分反应分子动力学模拟
- DOI:
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Kaymak, M.C.;Schoenholz, S.S.;Cubuk, E.D.;O’Hearn, K.A.;Merz Jr., K.M.;Aktulga, H.M.
- 通讯作者:Aktulga, H.M.
Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units
NVIDIA 和 AMD 图形处理单元上的量子力学/分子力学模拟
- DOI:10.1021/acs.jcim.2c01505
- 发表时间:2023-02
- 期刊:
- 影响因子:5.6
- 作者:Manathunga, Madushanka;Aktulga, Hasan Metin;Götz, Andreas W.;Merz, Kenneth M.
- 通讯作者:Merz, Kenneth M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Merz其他文献
Unraveling the three-metal-ion catalytic mechanism of the DNA repair enzyme endonuclease IV
揭示DNA修复酶核酸内切酶IV的三金属离子催化机制
- DOI:
10.1073/pnas.0603468104 - 发表时间:
2007-01-30 - 期刊:
- 影响因子:0
- 作者:
Ivaylo K. Ivanov;J. Tainer;J. McCammon;Kenneth Merz - 通讯作者:
Kenneth Merz
Kenneth Merz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Merz', 18)}}的其他基金
Elements: Software: NSCI: Efficient GPU Enabled QM/MM Calculations: AMBER Coupled with QUICK
要素: 软件:NSCI:支持高效 GPU 的 QM/MM 计算:AMBER 与 QUICK 相结合
- 批准号:
1835144 - 财政年份:2018
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
REU Site: iCER ACRES: iCER Advanced Computational Research Experience for Students
REU 网站:iCER ACRES:为学生提供 iCER 高级计算研究体验
- 批准号:
1560168 - 财政年份:2016
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Quantum Chemical Evaluation of NMR Chemical Shifts in Proteins
蛋白质中 NMR 化学位移的量子化学评估
- 批准号:
0517055 - 财政年份:2005
- 资助金额:
$ 226.41万 - 项目类别:
Continuing Grant
Quantum Chemical Evaluation of Inter- and Intra-molecular Interactions in Proteins
蛋白质分子间和分子内相互作用的量子化学评估
- 批准号:
0211639 - 财政年份:2002
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Research Experiences for Undergraduates in Chemistry at The Pennsylvania State University
宾夕法尼亚州立大学化学专业本科生的研究经历
- 批准号:
9531318 - 财政年份:1996
- 资助金额:
$ 226.41万 - 项目类别:
Continuing Grant
相似国自然基金
基于自复位混合阻尼实现钢框架综合韧性提升的多性态地震响应机理与设计调控方法研究
- 批准号:52378182
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
协同控制支撑钢框架自复位与耗能协调机理和韧性优化方法研究
- 批准号:52308195
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
P-S-Se三元共价框架结构设计及在锂硫电池中的无穿梭效应储锂机理研究
- 批准号:22379114
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
选择性分离水产品中全氟辛酸的金属有机框架的设计制备及吸附机制研究
- 批准号:32302234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于共价有机框架的噬菌体-光催化协同靶向抗菌策略用于顽固性细菌感染的研究
- 批准号:22378279
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347321 - 财政年份:2024
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411294 - 财政年份:2024
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411296 - 财政年份:2024
- 资助金额:
$ 226.41万 - 项目类别:
Standard Grant