CAREER: Additive Manufacturing with Acoustically Assembled Multi-Scale Composite Materials

职业:使用声学组装的多尺度复合材料进行增材制造

基本信息

  • 批准号:
    2240170
  • 负责人:
  • 金额:
    $ 51.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2028-07-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant focuses on understanding and advancing a new processing pathway for the additive manufacturing of the next-generation functional materials. Additive manufacturing technologies have rapidly matured in pursuit of geometric complexity, scalability, and reproducibility; however, similar advances in customized, application-specific engineered materials are limited. Innovations to control printed architectures across both microstructural and component levels enable the realization of advanced multi-functional, multi-material composites. Such capabilities are critical to addressing the demanding material requirements of transformative technologies including high-capacity energy storage, clean energy, and quantum computing. This research project seeks to develop, understand, and validate the application of external fields, such as acoustic fields, within additive manufacturing processes and discover the fundamental process mechanisms that enable precise spatial control over micro- and nanoparticle constituents. The cross-disciplinary nature of this research expands opportunities for interdisciplinary training and positions this project for enhancing interest K-12 students in science, technology, engineering, arts, and mathematics (STEAM). This project establishes education and outreach activities directly integrated with research outcomes including: (i) an annual Additive Manufacturing Make-a-thon focused on innovative distributed manufacturing technologies, (ii) a culture-based engineering outreach program to promote careers in STEAM to Native Hawaiian students, (iii) mentored research opportunities to support STEAM education and workforce development, and (iv) curriculum innovation at the undergraduate and graduate levels. The specific goal of this research is to discover the scientific foundations for the additive manufacturing of acoustically assembled multi-scale composite materials with engineered properties resulting from deterministically ordered microstructures. A central challenge to creating nanoparticle-based composite materials is the control of the spatial distribution of nanoparticles across multiple length-scales. External fields, such as acoustic fields, have been shown to enable spatial control over microscale particles during a direct deposition additive manufacturing process. The research project proposes an acoustophoretic additive manufacturing method that combines three mechanisms to enable the continuous hierarchical assembly of bulk materials: (i) surface functionalization to create ordered/disordered micron-scale nanoparticle aggregates in solution, (ii) acoustic fields to assemble microscale aggregates into mesoscale structures, and (iii) direct deposition of these mesoscale structures into bulk components. The project combines theoretical and experimental studies to systematically investigate and reveal the fundamental principles governing the mechanics of flow-based, field-assisted additive manufacturing across multiple length scales. A key focus is to obtain a better understanding of the processing-structure-property relationships governing the use of acoustic fields to fabricate multiscale composite materials with specific, functionally-graded properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助的重点是理解和推进下一代功能材料增材制造的新加工途径。为了追求几何复杂性、可扩展性和可重复性,增材制造技术已经迅速成熟;然而,定制的、特定应用的工程材料的类似进展是有限的。跨微观结构和组件级别控制印刷架构的创新能够实现先进的多功能、多材料复合材料。这些能力对于满足大容量能源存储、清洁能源和量子计算等变革性技术的严格材料要求至关重要。该研究项目旨在开发、理解和验证外部场(例如声场)在增材制造工艺中的应用,并发现能够对微米和纳米粒子成分进行精确空间控制的基本工艺机制。这项研究的跨学科性质扩大了跨学科培训的机会,并使该项目能够提高 K-12 学生对科学、技术、工程、艺术和数学 (STEAM) 的兴趣。该项目建立了与研究成果直接结合的教育和外展活动,包括:(i)每年一度的增材制造马拉松,重点关注创新的分布式制造技术,(ii)基于文化的工程外展计划,以促进 STEAM 领域的职业发展夏威夷学生,(iii) 指导研究机会以支持 STEAM 教育和劳动力发展,以及 (iv) 本科生和研究生水平的课程创新。这项研究的具体目标是发现声学组装的多尺度复合材料增材制造的科学基础,该复合材料具有由确定性有序微观结构产生的工程特性。制造基于纳米颗粒的复合材料的一个主要挑战是控制纳米颗粒在多个长度尺度上的空间分布。外部场(例如声场)已被证明可以在直接沉积增材制造过程中实现对微米级颗粒的空间控制。该研究项目提出了一种声泳增材制造方法,该方法结合了三种机制来实现散装材料的连续分层组装:(i)表面功能化以在溶液中创建有序/无序的微米级纳米粒子聚集体,(ii)声场来组装微米级聚集体形成介观结构,以及(iii)将这些介观结构直接沉积成块状部件。该项目结合了理论和实验研究,系统地研究和揭示了跨多个长度尺度的基于流的现场辅助增材制造的力学基本原理。一个关键焦点是更好地理解控制使用声场来制造具有特定功能分级特性的多尺度复合材料的加工-结构-性能关系。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式获得支持:使用基金会的智力价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tyler Ray其他文献

Tyler Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tyler Ray', 18)}}的其他基金

RII Track-4:NSF: Programmed Material Transport Properties via Scalable Assembly Processes
RII Track-4:NSF:通过可扩展组装工艺编程材料传输属性
  • 批准号:
    2229784
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant

相似国自然基金

富羟基挥发性固体添加剂设计合成及活性层形貌调控研究
  • 批准号:
    62304149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高镍正极表面金属离子和氧基离子双稳定的功能添加剂结构设计及性能研究
  • 批准号:
    22309074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不同CO2亲和性的添加剂设计聚氯乙烯配方体系及其超临界CO2微孔连续挤出发泡行为调控
  • 批准号:
    22378113
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
纳米局域疏水添加剂原位诱导水系电池SEI膜的构筑机制
  • 批准号:
    52302213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
陆基水产养殖微塑料及添加剂的转化机制与释放动力学
  • 批准号:
    42377373
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
CAREER: Additive Manufacturing of Structural Battery Carbon Fiber Reinforced Composites
职业:结构电池碳纤维增强复合材料的增材制造
  • 批准号:
    2340090
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
CAREER: Illuminating molecular-level effects in new plant-based nanocomposites for additive manufacturing by stereolithography
职业:通过立体光刻阐明用于增材制造的新型植物基纳米复合材料的分子水平效应
  • 批准号:
    2337946
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Joining Mechanisms in Dissimilar Metal Additive Manufacturing
职业:了解异种金属增材制造中的连接机制
  • 批准号:
    2338253
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了