CAREER: Exploring Robust Robot Manipulation through Compliance- and Motion-based Manipulation Funnels
职业:通过基于顺应性和运动的操纵漏斗探索鲁棒的机器人操纵
基本信息
- 批准号:2240040
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award supports research in general-purpose robotic manipulation in unstructured environments. Most real-world manipulation tasks involve uncertainties, un-modellable physics, and unknown parameters, where traditional approaches for precise planning and control have been hitting a hard limit. This award supports research that seeks to establish a novel paradigm that enables robots to handle uncertainties and unknowns through the lens of “manipulation funnels.” The concept of manipulation funnel is the same as that of an ordinary use funnel, wherein the idea is to filter a large set of task possibilities through a restrictive neck, defined by robot compliance or motion strategy, to a smaller set ensuring that the subsequent robot actions are robust against uncertainties. This new paradigm will improve real-world robot applications, such as those used in industrial production, household services, and healthcare. The award will also support several STEM initiatives, with focus on broadening participation to underrepresented groups, including hands-on robotic manipulation tutorials and an accompanying book, curriculum enhancement with research outcomes, and research opportunities for undergraduate and K-12 students.The objective of this project is to depart from the traditional pipeline of perception, planning, and control for robotic manipulation by generalizing the idea of geometric manipulation funnels in task space to new classes of funnels based on robot compliance and motion strategy for robust and dexterous manipulation against environmental uncertainties. Within this context, the focus is on identifying the entries, shaping the necks, and finding the exits in these new classes of manipulation funnels. For example, by leveraging active or passive compliance, funnels that are initially blocked can be can actively “opened” to precisely manipulate objects through self-stabilizing task formations and facilitate contact-rich manipulation with enlarged planning spaces and simplified control. Similarly, by leveraging motions and task constraints, funnels can be actively created to cage the state transitions in time to effectively reduce uncertainties or even directly figure out the mapping from uncertain manipulation inputs to their possible outputs. Furthermore, by transferring funnels through tasks and composing multi-modal manipulation solutions via funnel concatenations, the proposed funnel-based framework will enable complex manipulation tasks while firmly guaranteeing robustness. As a result, this project will enable robots to manipulate through a non-traditional but more reliable framework, allowing them to work in highly uncertain scenarios that were traditionally infeasible.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(职业)奖支持非结构化环境中通用机器人操纵的研究,大多数现实世界的操纵任务都涉及不确定性、不可建模的物理和未知参数,而传统的精确规划和控制方法一直在这些任务中遇到困难。该奖项支持旨在建立一种新颖范式的研究,使机器人能够通过“操纵漏斗”的视角处理不确定性和未知因素。操纵漏斗的概念与普通使用漏斗的概念相同。想法是通过由机器人顺应性或运动策略定义的限制性颈部将大量任务可能性过滤为较小的一组,确保后续的机器人动作对不确定性具有鲁棒性,这种新范例将改善现实世界的机器人应用,例如所使用的机器人应用。该奖项还将支持多项 STEM 举措,重点是扩大代表性不足群体的参与,包括机器人操作实践教程和随附书籍、包含研究成果的课程强化以及研究机会。本科生和 K-12 学生。目标该项目的目的是通过将任务空间中的几何操作漏斗的思想推广到基于机器人顺应性和运动策略的新型漏斗,以实现鲁棒而灵巧的操作,从而脱离机器人操作的传统感知、规划和控制流程在这种背景下,重点是识别这些新型操纵漏斗的入口、塑造瓶颈并找到出口。例如,通过利用主动或被动的合规性,可以改变最初被堵塞的漏斗。主动“打开”精准操控类似地,通过利用运动和任务约束,可以主动创建漏斗以及时控制状态转换,从而有效减少不确定性甚至直接计算。此外,通过任务转移漏斗并通过漏斗串联组成多模式操纵解决方案,所提出的基于漏斗的框架将实现复杂的操纵任务,同时坚定地保证鲁棒性。结果,该项目将使机器人能够通过非传统但更可靠的框架进行操作,使它们能够在传统上不可行的高度不确定的场景中工作。该项目得到了跨部门机器人基础研究计划的支持,共同管理和该奖项由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiyu Hang其他文献
Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting
使用蒙特卡罗树搜索进行多对象重排:平面非全面排序的案例研究
- DOI:
10.1109/iros45743.2020.9341532 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haoran Song;Joshua A. Haustein;Weihao Yuan;Kaiyu Hang;M. Wang;D. Kragic;J. A. Stork - 通讯作者:
J. A. Stork
Reinforcement Learning in Topology-based Representation for Human Body Movement with Whole Arm Manipulation
基于拓扑表示的强化学习全臂操纵人体运动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weihao Yuan;Kaiyu Hang;Haoran Song;D. Kragic;M. Wang;J. A. Stork - 通讯作者:
J. A. Stork
Object Placement Planning and optimization for Robot Manipulators
机器人操纵器的对象放置规划和优化
- DOI:
10.1109/iros40897.2019.8967732 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joshua A. Haustein;Kaiyu Hang;J. A. Stork;D. Kragic - 通讯作者:
D. Kragic
Herding by caging: a formation-based motion planning framework for guiding mobile agents
笼养:一种基于编队的运动规划框架,用于引导移动代理
- DOI:
10.1007/s10514-021-09975-8 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Haoran Song;Anastasiia Varava;O. Kravchenko;D. Kragic;M. Wang;Florian T. Pokorny;Kaiyu Hang - 通讯作者:
Kaiyu Hang
Dual-Arm In-Hand Manipulation Using Visual Feedback
使用视觉反馈的双臂手动操作
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Cruciani;Kaiyu Hang;Christian Smith;D. Kragic - 通讯作者:
D. Kragic
Kaiyu Hang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiyu Hang', 18)}}的其他基金
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
- 批准号:
2133110 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
- 批准号:22306014
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向资源受限嵌入式系统的深度神经网络优化和软硬件架构协同探索
- 批准号:62372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
构建神经系统成纤维细胞多组学图谱探索其在神经系统发育中的功能
- 批准号:32371023
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
- 批准号:82330049
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
肠道病毒抑制Wnt/β-catenin信号通路的机制解析与治疗手段探索
- 批准号:82302500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
- 批准号:
2327410 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Exploring Causality in Reinforcement Learning for Robust Decision Making
探索强化学习中的因果关系以实现稳健决策
- 批准号:
EP/Y003187/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1841399 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant