CAREER: Exploring Robust Robot Manipulation through Compliance- and Motion-based Manipulation Funnels
职业:通过基于顺应性和运动的操纵漏斗探索鲁棒的机器人操纵
基本信息
- 批准号:2240040
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award supports research in general-purpose robotic manipulation in unstructured environments. Most real-world manipulation tasks involve uncertainties, un-modellable physics, and unknown parameters, where traditional approaches for precise planning and control have been hitting a hard limit. This award supports research that seeks to establish a novel paradigm that enables robots to handle uncertainties and unknowns through the lens of “manipulation funnels.” The concept of manipulation funnel is the same as that of an ordinary use funnel, wherein the idea is to filter a large set of task possibilities through a restrictive neck, defined by robot compliance or motion strategy, to a smaller set ensuring that the subsequent robot actions are robust against uncertainties. This new paradigm will improve real-world robot applications, such as those used in industrial production, household services, and healthcare. The award will also support several STEM initiatives, with focus on broadening participation to underrepresented groups, including hands-on robotic manipulation tutorials and an accompanying book, curriculum enhancement with research outcomes, and research opportunities for undergraduate and K-12 students.The objective of this project is to depart from the traditional pipeline of perception, planning, and control for robotic manipulation by generalizing the idea of geometric manipulation funnels in task space to new classes of funnels based on robot compliance and motion strategy for robust and dexterous manipulation against environmental uncertainties. Within this context, the focus is on identifying the entries, shaping the necks, and finding the exits in these new classes of manipulation funnels. For example, by leveraging active or passive compliance, funnels that are initially blocked can be can actively “opened” to precisely manipulate objects through self-stabilizing task formations and facilitate contact-rich manipulation with enlarged planning spaces and simplified control. Similarly, by leveraging motions and task constraints, funnels can be actively created to cage the state transitions in time to effectively reduce uncertainties or even directly figure out the mapping from uncertain manipulation inputs to their possible outputs. Furthermore, by transferring funnels through tasks and composing multi-modal manipulation solutions via funnel concatenations, the proposed funnel-based framework will enable complex manipulation tasks while firmly guaranteeing robustness. As a result, this project will enable robots to manipulate through a non-traditional but more reliable framework, allowing them to work in highly uncertain scenarios that were traditionally infeasible.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(职业)奖支持在非结构化环境中进行通用机器人操纵的研究。大多数真实的操纵任务都涉及不确定性,不可验证的物理学和未知参数,在这些参数中,精确计划和控制的传统方法已受到严格限制。该奖项支持旨在建立一种新颖的范式的研究,该范式使机器人能够通过“操纵漏斗”的镜头处理不确定性和未知数。操纵漏斗的概念与普通使用漏斗的概念相同,其中,该想法是通过限制性颈部(由机器人合规性或运动策略定义的限制性颈部)过滤到较小的设置,以确保随后的机器人动作可靠,以防止不确定性。这种新的范式将改善现实世界的机器人应用,例如工业生产,家庭服务和医疗保健中使用的机器人。该奖项还将支持多项STEM举措,重点是扩大人为不足的群体的参与,包括动手的机器人操纵教程以及一本参与的书籍,通过研究成果来增强课程,以及本科生和K-12学生的研究机会。基于机器人合规性和运动策略的新类别渠道的空间,以对环境不确定性进行稳健和灵活的操纵。在这种情况下,重点是识别条目,塑造脖子,并在这些新的操纵漏斗中找到出口。例如,通过利用主动或被动合规性,可以主动“打开”最初被阻止的漏斗通过自我稳定的任务形式来精确操纵对象,并通过增加的计划空间和简化的控制来促进接触式操纵。同样,通过利用动作和任务约束,可以积极创建funnels及时封闭状态过渡以有效地减少不确定性,甚至直接从不确定的操纵输入到其可能的输出中直接找出映射。此外,通过通过任务转移funnels并通过漏斗串联组成多模式操纵解决方案,拟议的基于漏斗的框架将实现复杂的操纵任务,同时确保稳健性。结果,该项目将使机器人能够通过非传统但更可靠的框架来操纵机器人,从而使它们能够在传统上不可行的高度不确定的情况下工作。该项目得到了机器人技术计划的跨指导基础研究的支持,该项目由工程局(ENG)以及计算机和信息科学与工程局(CISE)共同管理和资助。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力和更广泛影响的评估来审查Criteria通过评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiyu Hang其他文献
Multi-Object Rearrangement with Monte Carlo Tree Search: A Case Study on Planar Nonprehensile Sorting
使用蒙特卡罗树搜索进行多对象重排:平面非全面排序的案例研究
- DOI:
10.1109/iros45743.2020.9341532 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haoran Song;Joshua A. Haustein;Weihao Yuan;Kaiyu Hang;M. Wang;D. Kragic;J. A. Stork - 通讯作者:
J. A. Stork
Reinforcement Learning in Topology-based Representation for Human Body Movement with Whole Arm Manipulation
基于拓扑表示的强化学习全臂操纵人体运动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Weihao Yuan;Kaiyu Hang;Haoran Song;D. Kragic;M. Wang;J. A. Stork - 通讯作者:
J. A. Stork
Herding by caging: a formation-based motion planning framework for guiding mobile agents
笼养:一种基于编队的运动规划框架,用于引导移动代理
- DOI:
10.1007/s10514-021-09975-8 - 发表时间:
2021 - 期刊:
- 影响因子:3.5
- 作者:
Haoran Song;Anastasiia Varava;O. Kravchenko;D. Kragic;M. Wang;Florian T. Pokorny;Kaiyu Hang - 通讯作者:
Kaiyu Hang
Object Placement Planning and optimization for Robot Manipulators
机器人操纵器的对象放置规划和优化
- DOI:
10.1109/iros40897.2019.8967732 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Joshua A. Haustein;Kaiyu Hang;J. A. Stork;D. Kragic - 通讯作者:
D. Kragic
Dual-Arm In-Hand Manipulation Using Visual Feedback
使用视觉反馈的双臂手动操作
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Cruciani;Kaiyu Hang;Christian Smith;D. Kragic - 通讯作者:
D. Kragic
Kaiyu Hang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiyu Hang', 18)}}的其他基金
Collaborative Research: Self-Identification for Robot Manipulation under Uncertainty Aided by Passive Adaptability
协作研究:被动适应性辅助的不确定性下机器人操纵的自我识别
- 批准号:
2133110 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
ZNF683+CD8+组织驻留T细胞致食管肠神经干细胞分化异常在贲门失弛缓症发病中的作用和机制探索
- 批准号:82300614
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中缅边境恶性疟原虫对双氢青蒿素-哌喹的抗药性研究及该地区恶性疟替代治疗方案探索
- 批准号:32360118
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于水通道蛋白探索栀子“苦能燥湿”治疗胆汁淤积性肝病的作用机理研究
- 批准号:82360781
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于双细胞靶向与互作增强的多肽纳米药物体系构建及其在肝纤维化治疗中的应用探索
- 批准号:32301122
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算机模拟和实验研究探索定向控制酶解改善大豆7S球蛋白乳化性能的作用机理
- 批准号:32372271
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Exploring van der Waals Superconducting Josephson Junctions for Robust Qubits
RII Track-4:NSF:探索稳健量子位的范德华超导约瑟夫森结
- 批准号:
2327410 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Exploring Causality in Reinforcement Learning for Robust Decision Making
探索强化学习中的因果关系以实现稳健决策
- 批准号:
EP/Y003187/1 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Research Grant
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
- 批准号:
2748823 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Studentship
Collaborative: EAGER: Exploring and Advancing the State of the Art in Robust Science in Gravitational Wave Physics
合作:EAGER:探索和推进引力波物理学稳健科学的最新技术
- 批准号:
1841399 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant