CAREER: Enhancing the State of Health and Performance of Electronics via in-situ Monitoring and Prediction (SHaPE-MaP) - Toward Edge Intelligence in Power Conversion
职业:通过原位监控和预测 (SHAPE-MaP) 提高电子设备的健康状况和性能 - 迈向功率转换领域的边缘智能
基本信息
- 批准号:2239966
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With over 80 % of electricity expected to flow through power converters by 2030, there is a growing requirement to nearly double their operational lifetime (e.g., 50 years for solar PV systems, 30 years for offshore wind, etc.) for reducing the overall carbon footprint. On the other hand, applications like data centers frequently replace their power hardware preemptively to avoid potential outages. The underlying problem with most existing converter installations is the difficulty to assess their health or adapt their performance in real-time without disrupting their operation. To achieve dynamic performance enhancement and reliability improvement, there is a critical need for mission profile-oriented design methods and seamless integration of data-driven prognostic health management with power converters onboard, referred to as ‘Edge Intelligence’. The proposed ‘SHaPE-MaP’ framework aims to enhance the State of Health and performance of Power Electronics via in-situ Monitoring and Prediction using onboard FPGAs or processors for edge intelligence. If successful, the SHaPE-MaP framework will enable the identification of aged or potentially failing modules in real-time and avoid ‘preemptive decommissioning’, thereby increasing the operational life. It will further benefit the system operators in decision-making about maintenance or repair, and the supply chain team to better estimate the logistics or manage the inventory items. Hence, this project will have a widespread impact on most large-scale converter applications, potentially saving hundreds of millions, if not billions of dollars. Moreover, a robust education program will augment this interdisciplinary project to engage K-12 and college students.Predicting system behavior and health has been restricted to the technology design or prototyping phases, and they are hardly implemented in the final products. It is due to the need for additional computing resources, such as a laptop, to execute these techniques – a seemingly impractical scenario, especially in applications with a large number of power converters (e.g., data centers, solar PV farms, etc.). The proposed SHaPE-MaP framework will be a game-changer in enabling such edge intelligence. This project will advance the state-of-the-art power converter hardware and control systems via the following four key thrusts: (i) Development of integrated devices and onboard systems to estimate degradation at the component level; (ii) In-situ implementation of health prediction techniques and fault handling along with the converters using machine learning; (iii) Status estimation and resilient handling of faults and cyber-attacks at converter nodes using edge intelligence; and (iv) Design of coordinated circuits with embedded systems to minimize the computing resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计到 2030 年,超过 80% 的电力将流经电力转换器,因此越来越需要将其使用寿命延长近一倍(例如,太阳能光伏系统 50 年,海上风电 30 年等),以减少总体碳排放另一方面,像数据中心这样的应用程序经常提前更换其电源硬件,以避免潜在的停电,大多数现有转换器安装的根本问题是难以在没有情况下实时评估其运行状况或调整其性能。为了实现动态性能增强和可靠性改进,迫切需要面向任务配置文件的设计方法以及数据驱动的预测健康管理与机载电源转换器的无缝集成,称为“边缘智能”。 “SHAPE-MaP”框架旨在通过使用板载 FPGA 或边缘智能处理器进行现场监控和预测来提高电力电子设备的健康状况和性能。如果成功,SHAPE-MaP 框架将能够识别老化或老化的设备。实时发现潜在故障的模块并避免“抢先退役”,从而延长使用寿命,这将进一步有利于系统运营商进行维护或维修决策,以及供应链团队更好地估计物流或管理库存。因此,该项目将对大多数大型转换器应用产生广泛影响,可能节省数亿甚至数十亿美元。此外,强大的教育计划将增强这一跨学科项目,以吸引 K-12 和大学生。 .预测系统行为和健康状况这些技术仅限于技术设计或原型设计阶段,并且很难在最终产品中实现,这是因为需要额外的计算资源(例如笔记本电脑)来执行这些技术——这似乎是不切实际的场景,尤其是在具有以下功能的应用中。大量电力转换器(例如数据中心、太阳能光伏发电场等)。拟议的 SHaPE-MaP 框架将成为实现此类边缘智能的游戏规则改变者。该项目将推动最先进的技术发展。电源转换器硬件和控制系统,通过以下四个关键重点:(i)开发集成设备和机载系统,以估计组件级别的退化;(ii)使用机器学习与转换器一起现场实施健康预测技术和故障处理; (iii) 使用边缘智能对转换器节点的故障和网络攻击进行状态估计和弹性处理;以及 (iv) 设计具有嵌入式系统的协调电路,以最大限度地减少计算资源。该奖项的法定使命,并被认为值得通过以下方式获得支持:评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prognostic Health Monitoring of DC Microgrid with Fault Detection and Localization using Machine Learning Techniques
使用机器学习技术进行故障检测和定位的直流微电网的预测健康状况监控
- DOI:10.1109/ecce53617.2023.10362739
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bohara, Bharat;Krishnamoorthy, Harish S.
- 通讯作者:Krishnamoorthy, Harish S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harish Krishnamoorthy其他文献
A comparison of computational fluid dynamics predicted initial liquid penetration using rate of injection profiles generated using two different measurement techniques
使用两种不同测量技术生成的注入曲线速率对计算流体动力学预测初始液体渗透进行比较
- DOI:
10.1177/1468087417746475 - 发表时间:
2019 - 期刊:
- 影响因子:2.5
- 作者:
Haiwen Ge;Jaclyn E. Johnson;Harish Krishnamoorthy;Seong;J. Naber;Nan Robarge;E. Kurtz - 通讯作者:
E. Kurtz
Harish Krishnamoorthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Harish Krishnamoorthy', 18)}}的其他基金
Collaborative Research: Development of an Autonomous Ocean Observatory Node
合作研究:自主海洋观测站节点的开发
- 批准号:
2322492 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
内源性逆转录病毒增强子在胚胎干细胞类二细胞状态转换中的作用研究
- 批准号:32300670
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
碳纤维增强树脂基复合材料注射成型过程中纤维状态演化机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
α-蒎烯诱导三七进入防御戒备状态增强抗黑斑病能力的机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
空间电源知识驱动多源无标签数据融合的服役状态增强感知评估方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
卡宾电子自旋状态调控及其对电激发生物粘合剂增强机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
BLR&D MERIT REVIEW RESEARCH CAREER SCIENTIST AWARD APPLICATION
BLR
- 批准号:
10701474 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Developing a Positive Approach to Substance Use Prevention in North American Indian Adolescents
制定积极的方法来预防北美印第安青少年的药物使用
- 批准号:
10192607 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Developing a Positive Approach to Substance Use Prevention in North American Indian Adolescents
制定积极的方法来预防北美印第安青少年的药物使用
- 批准号:
9978210 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Developing a Positive Approach to Substance Use Prevention in North American Indian Adolescents
制定积极的方法来预防北美印第安青少年的药物使用
- 批准号:
10406856 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Beta-lactam individualization for critically ill patients
重症患者β-内酰胺个体化
- 批准号:
9891148 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别: