Precise and efficient characterization of entangled multi-qubit quantum states and quantum gates with trapped ions
精确有效地表征纠缠多量子位量子态和带有捕获离子的量子门
基本信息
- 批准号:253572242
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum physics and particularly entanglement may serve for secure communication, precise measurements, efficient simulations of physical systems and fast quantum algorithms. Furthermore, entanglement is an intriguing phenomenon, since it discriminates the quantum world from the classical world. To date the most successful physical system for investigating entanglement are trapped atomic ions. In this project we develop methods to experimentally detect and characterize multi-particle entangled quantum states and multi-particle quantum gates in a close cooperation between theory and experiment. These methods will be applied to investigate multipartite entangled states and multi-qubit quantum gates realized using magnetic gradient induced coupling (MAGIC) between trapped atomic ions. MAGIC creates long range coupling between multiple ions. It allows for the realization of multi-qubit quantum gates using radio frequency radiation and does not require cooling trapped ions to their motional ground state. For the experimental realization of quantum information it is crucial to reproducibly carry out state preparation, state manipulation (quantum gates), and state detection with high accuracy. However, the efficient characterization of quantum states and gates is still challenging because most of the methods require prohibitively large resources for many-particle states or are only applicable to special cases. We will investigate how systematic and statistical errors affect experimental quantum gates and will develop efficient tools to characterize the performance of such gates. Toffoli gates, universal building blocks for quantum algorithms, will be experimentally implemented taking advantage of multi-qubit coupling based on MAGIC and will be characterized employing these novel methods. In addition, we will develop new entanglement criteria that can be applied efficiently in an experiment. They will be used to experimentally detect and characterize entangled weighted graph states of N trapped ions (with N between 3 and 9) that will be realized for the first time. Furthermore, state selective detection of hyperfine qubits will be investigated. First the complete detection process will be described exactly and then it will be numerically simulated. Finally it will be improved in close interaction between theory and experiment to obtain the highest possible detection fidelity. The insight gained in this project will be applicable to numerous other experiments in quantum information science encompassing many other physical systems.
量子物理学,尤其是纠缠可能可用于安全通信,精确的测量,有效的物理系统和快速量子算法。此外,纠缠是一种有趣的现象,因为它将量子世界与古典世界区分开来。迄今为止,最成功的研究纠缠的物理系统被困在原子离子。在这个项目中,我们开发了实验检测和表征多粒子纠缠量子状态和多粒子量子门的方法,以理论和实验之间的密切合作。这些方法将应用于研究多部分纠缠状态和使用磁性梯度诱导的偶联(魔法)实现的多部分量子门。 魔术在多种离子之间创建远距离耦合。它允许使用射频辐射来实现多量量子门,并且不需要冷却被捕获的离子到其运动基态。 为了实现量子信息的实验,至关重要的是,以高精度进行状态制备,状态操纵(量子门)和状态检测至关重要。但是,量子状态和大门的有效表征仍然具有挑战性,因为大多数方法对于许多粒子状态需要大量资源,或者仅适用于特殊情况。我们将研究系统和统计错误如何影响实验量子门,并将开发有效的工具来表征此类门的性能。 Toffoli Gates是用于量子算法的通用构建块,将利用基于魔术的多数耦合实验实现,并将采用这些新型方法来表征。 此外,我们将制定可以在实验中有效应用的新纠缠标准。它们将用于实验检测和表征n个捕获离子的纠缠加权图状态(n在3到9之间),这将首次实现。此外,将研究状态选择性检测超细量子量。首先,将准确描述完整的检测过程,然后进行数字模拟。最后,它将在理论和实验之间的密切相互作用中得到改善,以获得最高的检测保真度。该项目获得的洞察力将适用于许多其他物理系统的量子信息科学中的许多其他实验。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A trapped-ion-based quantum byte with 10−5 next-neighbour cross-talk
- DOI:10.1038/ncomms5679
- 发表时间:2014-03
- 期刊:
- 影响因子:16.6
- 作者:C. Piltz;T. Sriarunothai;A. F.Var'on;Ch. Wunderlich
- 通讯作者:C. Piltz;T. Sriarunothai;A. F.Var'on;Ch. Wunderlich
Qudit hypergraph states
- DOI:10.1103/physreva.95.052340
- 发表时间:2016-12
- 期刊:
- 影响因子:2.9
- 作者:F. Steinhoff;C. Ritz;N. Miklin;O. Guhne
- 通讯作者:F. Steinhoff;C. Ritz;N. Miklin;O. Guhne
Unified approach to entanglement criteria using the Cauchy-Schwarz and Hölder inequalities
使用柯西-施瓦茨和霍尔德不等式的纠缠准则统一方法
- DOI:10.1103/physreva.90.022315
- 发表时间:2014
- 期刊:
- 影响因子:2.9
- 作者:S. Wölk;M. Huber;O. Gühne
- 通讯作者:O. Gühne
Characterizing the width of entanglement
- DOI:10.1088/1367-2630/aa5015
- 发表时间:2016-12
- 期刊:
- 影响因子:3.3
- 作者:S. Wölk;O. Gühne
- 通讯作者:S. Wölk;O. Gühne
Graph states and local unitary transformations beyond local Clifford operations
- DOI:10.1088/1751-8121/aa67cd
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:Nikoloz Tsimakuridze;O. Gühne
- 通讯作者:Nikoloz Tsimakuridze;O. Gühne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Otfried Gühne其他文献
Professor Dr. Otfried Gühne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Otfried Gühne', 18)}}的其他基金
Characterizing multiparticle correlations with exponential families
用指数族表征多粒子相关性
- 批准号:
247058788 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Characterizing high-dimensional entanglement and coherence
表征高维纠缠和相干性
- 批准号:
440958198 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
降维表征冷热电能源耦合报价的多能源市场高效出清方法研究
- 批准号:52307116
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
原位表征指导顺序印刷调控有机光伏活性层的纵向结构实现高效大面积器件制备
- 批准号:22309143
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于酸蚀表面三维特征的连铸坯碳偏析程度高效表征基础研究
- 批准号:52274318
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于酸蚀表面三维特征的连铸坯碳偏析程度高效表征基础研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
复杂公共安全突发事件多视角大数据的高效表征与挖掘
- 批准号:62272058
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
相似海外基金
Development and characterization of efficient connections for multi-storey timber buildings
多层木结构建筑高效连接的开发和表征
- 批准号:
RGPIN-2017-05890 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
FET: Small: Collaborative Research: Efficient and Robust Characterization of Quantum Systems
FET:小型:协作研究:量子系统的高效且稳健的表征
- 批准号:
2100794 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Development and characterization of efficient connections for multi-storey timber buildings
多层木结构建筑高效连接的开发和表征
- 批准号:
RGPIN-2017-05890 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Development and characterization of efficient connections for multi-storey timber buildings
多层木结构建筑高效连接的开发和表征
- 批准号:
RGPIN-2017-05890 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
FET: Small: Collaborative Research: Efficient and Robust Characterization of Quantum Systems
FET:小型:协作研究:量子系统的高效且稳健的表征
- 批准号:
1909141 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant